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Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO 
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND 
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR 
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, 
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, 
operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products. 

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are trademarks of 
Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not 
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other 
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use 
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice.

Notice revision #20110804
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My Personal Disclaimer

Take this presentation with a grain of salt.

Some recipes, switches, settings, or some advice may or may not work on your 
system.

Please consult the manual and ask the operations team of the machine before you 
shoot yourself. 
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Intel Technologies for HPC

Network
& Fabric

Software
& Services

Processors
Intel® Xeon® Processor

Coprocessor
Intel® Many Integrated Core

I/O & 
Storage

Intel®
Cluster
Ready
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3D
Tri-

Gate

Hi-K
Metal
Gate

14nm

2013
10nm

R&D**

**Future options are forecasts and subject to change without notice.

7nm

R&D**

Transforming the Economics of HPC

Executing to Moore’s Law

Predictable Silicon Track Record – well and alive at Intel.
Enabling new devices with higher performance and 
functionality while controlling power, cost, and size
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Driving Innovation and Integration
Enabled by Leading Edge Process Technologies

Integrated Today Coming in the Future

SYSTEM LEVEL BENEFITS IN COST, POWER, DENSITY, SCALABILITY & PERFORMANCE



Copyright© 2015, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

The Magic of Integration 
Moore‘s Law at Work & Architecture Innovations

1970s

150 MFLOPS
CRAY-1

Image: Rama, EPFL

2015

1000000 MFLOPS
2S Intel® Xeon® Processor

6666x



Intel® Xeon Processor Architecture
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Intel “Tick-Tock” Roadmap – Part I

Merom

NEW
Micro architecture

65nm
TOCK

Penryn

NEW
Process Technology

45nm
TICK

Nehalem

NEW
Micro architecture

45nm
TOCK

Westmere

NEW
Process Technology

32nm
TICK

Sandy Bridge

NEW
Micro architecture

32nm
TOCK

Ivy Bridge

NEW
Process Technology

22nm
TICK

Intel® Core™

MicroArchitecture
Micro Architecture

Codename “Nehalem”
2nd Generation

Intel® Core™  Micro 
Architecture 

2008
SSE4.2

2011
AVX

2009
AES

2007
SSE4.1

2006
SSSE-3

2012
RDRAND 
etc

3nd Generation
Intel® Core™  Micro 

Architecture 
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Haswell

NEW
Micro architecture

22nm
TICK

Broadwell

NEW
Process Technology

14nm
TOCK

Skylake

NEW
Micro architecture

14nm
TICK

TBD

NEW
Process Technology

10nm
TOCK

TBD

NEW
Micro architecture

10nm
TICK

TBD

NEW
Process Technology

7nm
TOCK

2015/6 (?)

AVX-512 (?)

??????September
2014 !

5 new Inst.

2013

AVX-2

???

4nth Generation
Intel® Core™  Micro 

Architecture 
TBD TBD TBD TBD TBD 

Intel “Tick-Tock” Roadmap – Part II
Future Release Dates & Features subject to Change without Notice !



Copyright© 2015, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Recap: Sandy Bridge and Ivy Bridge Execution Units

256K L2 Cache (Unified)

Scheduler(54)
Port 0 Port 1 Port 2 Port 3 Port 4

ALU ALU ALU

32K L1 DCache (8way)32K L1 ICache (8way)

48 byte/cycles

Load Load
Store Store

Port 5

Memory Control

STD
V-Mul

V-Shuf

FDiv

256 FP Mul

256 FP Blend

V-Add

V-Shuf

256 FP Add

JMP

256 FP Shuf

256 FP Bool

256 FP Blend

Pre-Decode Inst. Queue Decoders (4)

Allocate/Rename/Retire (4)Branch Predictor

O
u

t-of-or d
er (1 68)

Uop Cache (1536)
16byte/cycle
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Haswell Core at a Glance
Next generation branch prediction
• Improves performance and saves wasted work
Improved front-end
• Initiate TLB and cache misses speculatively
• Handle cache misses in parallel to hide latency
• Leverages improved branch prediction
Deeper buffers
• Extract more instruction parallelism
• More resources when running a single thread
More execution units, shorter latencies
• Power down when not in use
More load/store bandwidth
• Better prefetching, better cache line split latency & 

throughput, double L2 bandwidth
No pipeline growth
• Same branch misprediction latency
• Same L1/L2 cache latency

DecodeDecode

uop Queueµop Allocation

Out-of-Order Execution

µop Cache 
Tag

Icache
Tag

Branch Prediction

ITLB

µop Cache 
Data

Icache Data

1 2 3 4 5 6 70
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FMA
FP Multiply

2xFMA
• Doubles peak FLOPs
• Two FP multiplies benefits 

legacy

Haswell Execution Unit Overview

Unified Reservation Station

P
ort 
1

P
ort 
2 P
ort 
3

P
ort 
4 P
ort 
5

Load &
Store Address

Store
Data

Integer 
ALU & Shift

Integer
ALU & LEA

Integer 
ALU & LEA

FMA FP Mult
FP Add

Divide

P
ort 
6

Integer 
ALU & Shift

P
ort 
7

Store 
Address

P
ort 
0

New AGU for Stores
• Leaves Port 2 & 3 open for 

Loads

Branch

New Branch Unit
• Reduces Port0 Conflicts
• 2nd EU for high branch code

4th ALU
• Great for integer workloads
• Frees Port0 & 1 for vector

Vector
Shuffle

Branch

Vector Int
Multiply
Vector

Logicals

Vector 
Shifts

Vector Int
ALU

Vector Int
ALU

Vector
Logicals

Vector
Logicals
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Haswell Buffer Sizes

Nehalem Sandy Bridge Haswell

Out-of-order Window 128 168 192

In-flight Loads 48 64 72

In-flight Stores 32 36 42

Scheduler Entries 36 54 60

Integer Register File N/A 160 168

FP Register File N/A 144 168

Allocation Queue 28/thread 28/thread 56

Extract more parallelism in every generation
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Core Cache Size/Latency/Bandwidth
Metric Nehalem Sandy Bridge Haswell

L1 Instruction Cache 32K, 4-way 32K, 8-way 32K, 8-way

L1 Data Cache 32K, 8-way 32K, 8-way 32K, 8-way

Fastest Load-to-use 4 cycles 4 cycles 4 cycles

Load bandwidth 16 Bytes/cycle 32 Bytes/cycle
(banked) 64 Bytes/cycle

Store bandwidth 16 Bytes/cycle 16 Bytes/cycle 32 Bytes/cycle

L2 Unified Cache 256K, 8-way 256K, 8-way 256K, 8-way

Fastest load-to-use 10 cycles 11 cycles 11 cycles

Bandwidth to L1 32 Bytes/cycle 32 Bytes/cycle 64 Bytes/cycle

L1 Instruction TLB 4K: 128, 4-way
2M/4M: 7/thread

4K: 128, 4-way
2M/4M: 8/thread

4K: 128, 4-way
2M/4M: 8/thread

L1 Data TLB
4K: 64, 4-way

2M/4M: 32, 4-way
1G: fractured

4K: 64, 4-way
2M/4M: 32, 4-way

1G: 4, 4-way

4K: 64, 4-way
2M/4M: 32, 4-way

1G: 4, 4-way

L2 Unified TLB 4K: 512, 4-way 4K: 512, 4-way 4K+2M shared: 1024, 
8-way



Copyright© 2015, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

New Instructions in Haswell
Group Description Count *

SIMD Integer Instructions 
promoted to 256 bits

Adding vector integer operations to 256-bit

170 /  124Gather Load elements using a vector of indices, vectorization enabler

Shuffling / Data 
Rearrangement

Blend, element shift and permute instructions

FMA Fused Multiply-Add operation forms ( FMA-3) 96 / 60

Bit Manipulation and 
Cryptography

Improving performance of bit stream manipulation and decode, large integer 
arithmetic and hashes

15 / 15

TSX = RTM+HLE Transactional Memory   4/4

Others MOVBE: Load and Store of Big Endian forms
INVPCID: Invalidate processor context ID

2 / 2

AV
X

-2

* Total instructions / different mnemonics
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FMA: Fused Multiply Add Instruction
Improves accuracy and performance for commonly used class of algorithms

Latency 
(clocks)

Xeon 
E5 v2

Xeon 
E5 v3

Ratio
*

MulPS, PD 5 5

AddPS, PD 3 3

Mul+Add /FMA 8 5 0.625

Mirco‐
Architecture Instruction Set

SP FLOPs 
per cycle

DP FLOPs per 
cycle

Nehalem SSE (128‐bits) 8 4

Sandy Bridge AVX (256‐bits) 16 8

Haswell AVX2 (FMA) (256‐bits) 32 16

>37% reduced latency
(5-cycle FMA latency same as an FP multiply)

2x peak FLOPs/cycle (throughput)

*Lower is 
better

Increased performance potential for Technical Computing workloads like Structural Analysis, CFD, EMF 
computation, Cosmology, …. *√



Intel® Xeon Processor Platforms
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Intel® Xeon® Processors

Intel® Xeon® E3 Intel® Xeon® E5 Intel® Xeon® E7

3x QPIE7

PCIe3

M
em

or
y

2x QPI

PCIe3

M
em

or
y

E5

PCIe3

M
em

or
y

E3
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Intel® Xeon® Processors & Platforms

Intel® Xeon®

E5-1xxx

Intel® Xeon®

E5-2xxx
Intel® Xeon®

E5-4xxx
Intel® Xeon®

E7-xxxx
Intel® Xeon®

E7-xxxx

>4SCPU/Socket

QPI

Intel® Xeon®

E3-1xxx
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Intel® Xeon® E5-2600v3 Processor Overview 

Intel® Hyper-Threading 
Technology (2 threads/core)

Intel® QuickPath Interface (x2)
9.6GT/s

Intel® AVX 2.0 /
Haswell New Instruction (HNI)

~2.5 MB Last Level Cache/Core
Up to 45 MB total LLC 

Power Management
Per Core P-State (PCPS)
Uncore Frequency Scaling (UFS)
Energy Efficient Turbo (EET)

22nm Process (Tock)

PCI Express 3.0
EP: 40 Lanes

Intel® Turbo Boost 
Technology

Integrated Voltage Regulator

Up to 18 Cores

Core LLC
Core LLC

Core LLC
Core LLC

System Agent

DMI

IMC

Intel® QuickPath Interface

PCIe3.0

.

.

.

.

.

.
Core LLC
Core LLC

New Feature

Existing Feature

Memory Technology:
Socket R3
4xDDR4 channels
1333, 1600, 1866,  2133 MTS
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Key Differences Between E5-2600 v2 & E5-2600 v3

Xeon E5-2600 v2 Xeon E5-2600 v3

Core Count Up to 12 Cores Up to 18 Cores

Frequency TDP & Turbo Frequencies TDP & Turbo Freq
AVX & AVX Turbo Freq

AVX Support AVX 1
8 DP Flops/Clock/Core

AVX 2
16 DP Flops/Clock/Core

Memory Type 4xDDR3 channels
RDIMM, UDIMM, LRDIMM

4xDDR4 channels
RDIMM, LRDIMM

Memory Frequency 
(MHz) 1866 (1DPC), 1600, 1333, 1066 RDIMM: 2133 (1DPC), 1866 (2DPC), 1600

LRDIMM: 2133 (1&2DPC), 1600

QPI Speed Up to 8.0 GT/s Up to 9.6 GT/s

TDP Up to 130W Server, 150W 
Workstation

Up to 145W Server, 160W Workstation
(Increase due to Integrated VR)

Power 
Management

Same P-states for all cores
Same core & uncore frequency

Per-core P-states
Independent uncore frequency scaling

Energy Efficient Turbo
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On-Die Interconnect Enhancements

E5-2600 v2
E5-2600 v3

PCIe QPI

IVB IVB

IVB IVB

IVB IVB

IVB IVB

Shared
L3

Cache
(30MB)

Memory Controller

IVB

IVB

IVB

IVB

Shared
L3

Cache

Memory Controller
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Haswell EP Die Configurations

Not representative of actual die-sizes, orientation and layouts – for informational use only.
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Chop Columns Home Agents Cores Power (W) Transitors (B) Die Area (mm2)

HCC 4 2 14-18 110-145 5.69 662

MCC 3 2 6-12 65-160 3.84 492

LCC 2 1 4-8 55-140 2.60 354
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Haswell Processor Improvements
Area Change Benefit

On-die interconnect • Two Fully Buffered Rings • Enables higher core counts and provides higher bandwidth 
per core.

Home Agent / Memory 
Controller

• DDR4
• Two Home Agents in more SKUs
• Directory Cache

• Increased memory bandwidth and power efficiency
• Greater socket BW with more outstanding requests
• Lower average memory latency

LLC • Cluster On Die (COD) mode
• Improved LLC allocation policy
• Cache Allocation Monitoring

• Increased performance, reduced latency
• Enables improved performance by better application 

placement in a virtualized environment

Power Management • Separate clock and voltage domains for each core 
and uncore (enables PCPS, UFS)

• Better performance per watt
• Lower socket idle (package C6) power.

QPI 1.1 • Increase to 9.6GT/s • Multi-socket coherence performance

Integrated
IO-Hub (IIO)

• LLC cache tracks IIO cache line ownership
• Increased PCIe buffers and credits

• Improves PCIe bandwidth under conflicts (concurrent 
accesses to the same cache line).

• Increase PCIe bandwidth and latency tolerance

PCI Express 3.0 • DualCast - Allows a single write transaction to 
multiple targets.

• Relaxed ordering

• Utilized to minimize memory channel bandwidth – data can 
be sent to memory and on the NTB port. Storage 
applications are typically memory bandwidth limited.
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DDR4 Benefits
Lower Power
 Lower voltage (1.5v -> 1.2v) DIMMs
 Smaller page size (1024 -> 512) for x4 devices
 Initial results show savings of ~2W per DIMM at the wall.

Improved RAS
 Command/Address Parity error recovery

Higher bandwidth
 14% higher STREAM results  (DDR4-2133 vs. DDR3-1866)
 Increased DIMM frequency when multiple DIMMs per channel are installed

Dimms / Ch DDR3 1.5v DDR3 1.35v DDR4 RDIMM DDR4 LRDIMM

1 1866 1600 2133 2133

2 1600 1333 1866 2133

3 1066 800 1600 1600
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Cluster on Die (COD) Mode

 Supported on 1S & 2S SKUs with 2 Home Agents (10+ 
cores)

 In memory directory bits & directory cache used on 2S 
to reduce coherence traffic and cache-to-cache transfer 
latencies

 Targeted at NUMA optimized workloads where latency is 
more important than sharing across Caching Agents
 Reduces average LLC hit and local memory latencies 
 HA sees most requests from reduced set of threads 

potentially offering higher effective memory 
bandwidth

 OS/VMM own NUMA and process affinity decisions

Cluster0

Cbo
LLC

Cbo
LLC

Sbo

Sbo

Cbo
LLC

Cbo
LLC

Cbo
LLC

Cbo
LLC

Cbo
LLC

Cbo
LLC

Cbo
LLC

Cbo
LLC

Cbo
LLC

Cbo
LLC

Cbo
LLC

Cbo
LLC

HA0

QPI 
0/1 IIO

HA1

Core

CoreCore

Core

CoreCore

Core

Core
Core

Core

Core

Core

Core

Core

Cluster1

Cbo
LLC

Cbo
LLC

Cbo
LLCCore

Core

Core

CoreCbo
LLC

COD Mode for 18C E5-2600 v3
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Previous Generations
E5 v3 & Future 

Generations

Intel® Turbo Boost Technology 2.0 and Intel® AVX*

 Intel® Turbo Boost Technology 2.0 automatically allows processor cores to run 
faster than the Rated and AVX base frequencies if they’re operating below power, 
current, and temperature specification limits.

 Amount of turbo frequency achieved depends on the type of workload, number of 
active cores, estimated current & power 
consumption, and processor temperature

 Due to workload dependency, separate
AVX base & turbo frequencies will be 
defined for Xeon® processors starting 
with E5 v3 product family
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How does frequency change with AVX workloads? 
Core detects presence of AVX instructions 
 AVX instructions draw more current & higher voltage is needed to sustain operating 

conditions

Core signals to Power Control Unit (PCU) to provide additional voltage & core 
slows the execution of AVX instructions 
 Need to maintain TDP limits, so increasing voltage may cause frequency drop 
 Amount of frequency drop will depend on workload power & AVX frequency limits

PCU signals that the voltage has been adjusted & core returns to full execution 
throughput

PCU returns to regular (non-AVX) operating mode 1ms after AVX instructions 
are completed



Programming for Intel Architecture
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Highly Parallel Applications

Theoretical acceleration of a highly parallel processor over a Intel® Xeon® 
parallel processor (<1: Intel® Xeon® faster) – For illustration only

Efficient vectorization, 
threading, and parallel execution 
drives higher performance for 
suitable scalable applications
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Parallel Programming for Intel® Architecture

Parallel programming to utilize the hardware resources,
in an abstracted and portable way

Use threads directly (pthreads) or via OpenMP*, C++11
Use tasking, Intel® TBB / Cilk™ PlusCORES

Intrinsics, auto‐vectorization, vector‐libraries
Language extensions for vector programming (SIMD)VECTORS

Use caches to hide memory latency
Organize memory access for data reuseBLOCKING

Structure of arrays facilitates vector loads / stores, unit stride
Align data for vector accessesDATA LAYOUT

Use Intel® MPI, Co‐Array FortranNODES
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Programming for Intel Procesors
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POSIX threads* 

Intel® Math Kernel Library

Intel® Cilk™ Plus Array Notations

Auto vectorization

Semi‐auto vectorization:     
#pragma (vector, ivdep,  simd)

C/C++ Vector Classes         
(F32vec16, F64vec8)

Intrinsics

Ease of use

Fine control

Parallelization Vectorization
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Preparing Code for SIMD

Identify Hotspots

Integer 
or FP?

Can 
convert 
to SP?

Change to SP

Re-layout data for SIMD efficiency

Align data structures

Convert code to SIMD form

Follow SIMD coding guidelines

Optimize memory access patterns
and prefetch (if appropriate)

Further optimization

IntegerFP

Yes

No

Precision is 
important: 
impacts the 
SIMD width.
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Data Layout – Common Layouts

Array-of-Structs (AoS)

 Pros:
Good locality of {x, y, z}.
1 memory stream.

 Cons:
Potential for gather/scatter.

Struct-of-Arrays (SoA)

 Pros:
Contiguous load/store.

 Cons:
Poor locality of {x, y, z}.
3 memory streams.

Hybrid (AoSoA)

 Pros:
Contiguous load/store.
1 memory stream.

 Cons:
Not a “normal” layout.

x x xx x x

y y yy y y

z z zz z z

x x

x x

x x

y y

y y

y y

z z

z z

z z

x x

x x

x x

yy

yy

yy

z z

z z

z z
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Data Layout – Why It’s Important

Instruction-Level

 Hardware is optimized for contiguous loads/stores.

 Support for non-contiguous accesses differs with hardware.
(e.g., AVX2/KNC gather)

Memory-Level

 Contiguous memory accesses are cache-friendly.

 Number of memory streams can place pressure on prefetchers.
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Data Alignment – Why It’s Important

0 1 2 3 … … 6 7 8 9 … … … … … …
Cache Line 0 Cache Line 1

0 1 2 3 6 7 8 9

Aligned Load
 Address is aligned.
 One cache line.
 One instruction.

Unaligned Load
 Address is not aligned.
 Potentially multiple cache lines.
 Potentially multiple instructions.
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Data Alignment – Sample Applications

1) Align Memory

 _mm_malloc(bytes, 64) / !dir$ attributes align:64

2) Access Memory in an Aligned Way

 for (i = 0; i < N; i++) { array[i] … }

3) Tell the Compiler

 #pragma vector aligned / !dir$ vector aligned

 __assume_aligned(p, 16) / !dir$ assume_aligned (p, 16)

 __assume(i % 16 == 0) / !dir$ assume (mod(i, 16) .eq. 0)
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Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7

8 9 …

Data
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Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7

8 9 …

Data
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Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7

8 9 …

Data

Halo
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Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7

8 9 …

Data

Halo
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Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7 8 9 …

Not strictly 
necessary…

Data

Halo

Padding
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Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7 8 9 …

Not strictly 
necessary…

Data

Halo

Padding
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Implicit Vectorization

 Very powerful, but a compiler cannot make unsafe assumptions.
int* g_size;

void not_vectorizable
(float* a, float* b, float* c, int* ind) {

for (int i = 0; i < *g_size; i++) {
int j = ind[i];
c[j] += a[i] + b[i];

}
}

 Unsafe Assumptions:
 a, b and c point to different arrays.
 Value of global g_size is loop-invariant.
 ind[i] is a one-to-one mapping.
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Use the Compiler’s Optimization Report

Begin optimization report for: not_vectorizable(float *, float *, float *, int *)

Report from: Interprocedural optimizations [ipo]

INLINE REPORT: (not_vectorizable(float *, float *, float *, int *)) [1] vectorize.cc(4,63)

Report from: Loop nest, Vector & Auto‐parallelization optimizations [loop, vec, par]

LOOP BEGIN at vectorize.cc(5,9)
remark #15344: loop was not vectorized: vector dependence prevents vectorization. First 

dependence is shown below. Use level 5 report for details
remark #15346: vector dependence: assumed ANTI dependence between  line 7 and  line 7
remark #25439: unrolled with remainder by 2

LOOP END

LOOP BEGIN at vectorize.cc(5,9)
<Remainder>
LOOP END
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Implicit Vectorization

 Very powerful, but a compiler cannot make unsafe assumptions.
int* g_size;

void vectorizable
(float* restrict a, float* restrict b, float* restrict c, int* restrict ind) {

int size = *g_size;
#pragma ivdep
for (int i = 0; i < size; i++) {

int j = ind[i];
c[j] += a[i] + b[i];

}
}

 Safe Assumptions:
 a, b and c point to different arrays. (restrict)
 Value of global g_size is loop-invariant. (pointer dereference outside loop)
 ind[i] is a one-to-one mapping. (#pragma ivdep)
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Implicit Vectorization – Improving Performance

Getting code to vectorize is only half the battle

 “LOOP WAS VECTORIZED” != “the code is optimal”

 Vectorized code can be slower than the scalar equivalent.

Compiler will always choose correctness over performance

 “Hints” and pragmas can’t possibly cover all the situations…

 … but we can usually rewrite loop bodies to assist the compiler.
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Explicit Vectorization 

Compiler Responsibilities

 Allow programmer to declare that code can and should be run in SIMD.

 Generate the code the programmer asked for.

Programmer Responsibilities

 Correctness (e.g., no dependencies, no invalid memory accesses).

 Efficiency (e.g., alignment, loop order, masking).
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Explicit Vectorization – Motivating Example 1

 The two += operators have different meaning from each other.

 The programmer should be able to express those differently.

 The compiler has to generate different code.

 The variables i, p and step have different “meaning” from each other.

float sum = 0.0f;
float *p = a;
int step = 4;

#pragma omp simd reduction(+:sum) linear(p:step)
for (int i = 0; i < N; ++i) {

sum += *p;
p += step;

}
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Explicit Vectorization – Motivating Example 2

 mandel() function is called from a loop over X/Y points.

 We would like to vectorize that outer loop.

 Compiler creates a vectorized function that acts on a vector of N values of c.

#pragma omp declare simd simdlen(16)
uint32_t mandel(fcomplex c)
{

uint32_t count = 1; fcomplex z = c;
for (int32_t i = 0; i < max_iter; i += 1) {

z = z * z + c;
int t = cabsf(z) < 2.0f;
count += t;
if (!t) { break;}

}
return count;

}
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Explicit Vectorization – Performance Impact

M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending OpenMP with Vector Constructs for Modern 
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312.
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Controlling FP Arithmetic with Intel® Composer XE
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Standard Compiler Switches
GCC ICC Effect

‐O0 ‐O0 Disable (almost all) optimization.
‐O1 ‐O1 Optimize for speed (no code size increase for ICC)
‐O2 ‐O2 Optimize for speed and enable vectorization (default for ICC)
‐O3 ‐O3 Turn on high-level optimizations
‐ftlo ‐ipo Enable interprocedural optimization
‐ftree‐vectorize ‐vec Enable auto-vectorization (auto-enabled with -O2 and -O3)
‐fprofile‐generate ‐prof‐gen Generate runtime profile for optimization
‐fprofile‐use ‐prof‐use Use runtime profile for optimization

‐parallel Enable auto-parallelization
‐fopenmp ‐qopenmp Enable OpenMP
‐g ‐g Emit debugging symbols

‐qopt‐report Generate the optimization report
‐ansi‐alias Enable ANSI aliasing rules for C/C++

‐mcorei7 ‐xSSE4.1 Generate code for Intel processors with SSE 4.1 instructions
‐mcorei7‐avx ‐xCORE‐AVX Generate code for Intel  processors with AVX1 instructions
‐mcorei7‐avx2 ‐xCORE‐AVX2 Generate code for Intel  processors with AVX2 instructions
‐mnative ‐xHOST Generate code for the current machine used for compilation
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Frequently Users want Consistent FP Results
(which is not necessarily the “most accurate” result)
Root cause for variations in results
 floating-point numbers  order of computation matters!

 Single precision arithmetic example (a+b)+c  !=  a+(b+c)
 226  – 226 + 1 = 1 (infinitely precise result)
 (226  – 226) + 1 = 1 (correct IEEE single precision result)
 226  – (226 – 1) = 0 (correct IEEE single precision result)

Conditions that affect the order of computations
 Different code branches (e.g., x87 versus SSE2 or AVX )

 Memory alignment (scalar or vector code) 

 Dynamic parallel task/thread/rank scheduling

Bitwise repeatable/reproducible results 
 repeatable = results the same as last run (same conditions)

 reproducible = results the same as results in other environments

 environments = OS / CPU / architecture / # threads / # processes / BIOS / pinning
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4.012345678902222

4.012345678902222

4.012345678901111

4.012345678902222
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Example
float t0, t1, t2;
...

t0 = t1 + t2 + 4.0f + 0.1f;

fld DWORD PTR _t1
fadd DWORD PTR _t2
fadd DWORD PTR _Cnst4.0
fadd DWORD PTR _Cnst0.1
fstp DWORD PTR _t0

movss xmm0, DWORD PTR _t1
addss xmm0, DWORD PTR _t2
addss xmm0, DWORD PTR _Cnst4.0
addss xmm0, DWORD PTR _Cnst0.1
movss DWORD PTR _t0, xmm0

movss xmm0, DWORD PTR _Cnst4.1
addss xmm0, DWORD PTR _t1
addss xmm0, DWORD PTR _t2
movss DWORD PTR _t0, xmm0

Favor Accuracy

Favor Portability

Favor Performance



Copyright© 2015, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 59

AVX Registers
SSE Registers

256

Sixteen 256-bit registers
Hold data only:

8 x single FP numbers
4 x double FP numbers
overlap with 128-bit SSE registers

MMX™ Technology / 
x87 Registers

80
64

Eight 80/64-bit registers
Hold data only
Direct access to MM0..MM7
No MMX™ Technology / FP 
interoperability

IA32-INT 
Registers

32

Fourteen 32-bit registers
Scalar data & addresses
Direct access to regs

Intel64 Register Set

mm0

mm7

ymm0

ymm15

st0

st7

eax

edi

…

xmm0

xmm15
… …

AVX-512 will extend ymm[0..15] to zmm[0..31] with 512-bit each.
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FP Model Summary

Key Value Safety Expression 
Evaluation

FPU Environ. 
Access

Precise FP 
Exceptions

precise
source
double
extended

Safe

Varies 
Source
Double

Extended

No No

strict Safe Varies Yes Yes

fast=1
(default)

Unsafe Unknown No No

fast=2 Very Unsafe Unknown No No

except
except-

*/**
*

*
*

*
*

Yes
No

* These modes are unaffected. –fp-model except[-] only affects the precise FP exceptions mode.
** It is illegal to specify –fp-model except in an unsafe value safety mode.
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Value Safety

 In SAFE mode, the compiler may not make any transformations that could affect the result, e.g., all 
the following are prohibited.

 UNSAFE mode is the default
 VERY UNSAFE mode enables riskier transformations

x / x  1.0 x could be 0.0, ∞, or NaN

x – y  - (y – x) If x equals y, x – y is +0.0 while – (y – x) is -
0.0

x – x  0.0 x could be ∞ or NaN
x * 0.0  0.0 x could be -0.0, ∞, or NaN
x + 0.0  x x could be -0.0
(x + y) + z 

x + (y + z)
General reassociation is not value safe

(x == x)  true x could be NaN
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Reassociation Example: Reductions

float Sum(const float A[], int n )
{

float sum=0;
for (int i=0; i<n; i++)

sum = sum + A[i];
return sum;

} 
float Sum( const float A[], int n )
{

int n4 = n-n%4; // or n4=n4&(~3)
int i;
float sum=0, sum1=0, sum2=0, sum3=0;
for (i=0; i<n4; i+=4) {

sum = sum + A[i];
sum1 = sum1 + A[i+1];
sum2 = sum2 + A[i+2];
sum3 = sum3 + A[i+3];

}
sum = sum + sum1 + sum2 + sum3;
for (; i<n; i++)

sum = sum + A[i];
return sum;

} 

• Scalar reduction gives 7-8X perf
gain for SSE – AVX even more !

• Invalid in SAFE modes

• Even in SAFE mode, OpenMP, MPI, 
TBB might do ‘unsafe’ reductions 
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Use of FMA Instructions [1]

Potential issue: Since execution of FMA does not round intermediate product 
result, final result may be different compared to older (non-FMA) CPUs 

• For QA comparisons to older processors, FMAs in compiled code can be disabled explicitly 
by

– -no-fma  (/Qfma-)

– -fp-model strict             (disables much more besides)

• FMAs can be disabled at function level by

 #pragma fp_contract (off)   (C/C++);  !DIR$ NOFMA (Fortran)



Copyright© 2015, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 64

Use of FMA Instructions [2]

• Putting multiply & add on separate lines does not disable FMA

• FMAs are not (completely) disabled by –fp-model precise

• None of the above disables FMA usage in math library

• requires  -fimf-arch-consistency=true

• Results may change on “Haswell” wrt “Sandy Bridge” even without recompilation! 

• math library may take different path at run-time

• For debugging interesting to know of:  fma() and fmaf() intrinsics from math.h give FMA result with a 
single rounding via a libm call, even for processors with no FMA instruction

t = a*b;
result = t + c;

// may still generate FMA 

t = a*b;
_mm_mfence();
result = t + c;     // no FMA
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Sample of FMA Rounding Difference 

double sub(double a, double b, double c, double d )
{

c = -a;
d =  b;
return (a*b + c*d);

}

• Without FMA, should evaluate to zero

• With FMA, it may not evaluate to zero 

Returns   FMA(a, b, (c*d))   or   FMA (c, d, (a*b))

Each has different rounding, unspecified which grouping the compiler will generate

This behavior is not suppressed by ‘fp-model precise’ ! 
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FP Model and FMA Summary 

Key Value Safety Expression 
Evaluation

FPU Environ. 
Access

Precise FP 
Exceptions

FMA Use

precise
source
double
extended

Safe

Varies 
Source
Double

Extended

No No Yes

strict Safe Varies Yes Yes No

fast=1
(default)

Unsafe Unknown No No Yes

fast=2 Very Unsafe Unknown No No Yes

except
except-

*/**
*

*
*

*
*

Yes
No

*
*

* These modes are unaffected. –fp-model except[-] only affects the precise FP exceptions mode.
** It is illegal to specify –fp-model except in an unsafe value safety mode.
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All Libraries Optimized for HSW 

Math libraries detect target processor by their own – independent of code generated by compiler 

• e.g., HSW-optimized version will be executed on HSW even in case binary is compiled for 
SandyBridge (-xavx) 

• Can be disabled by switch -fimf-arch-consistency=true for libimf and libsvml and CBWR API 
(conditional bit wise reproducibility) for Intel® MKL-VML 

• HSW optimization in some cases not necessarily implies use of FMA! 
Library Used for Comment 

libimf Library routines for single elements –
libm replacement 

libsvml Small vector math library: Used by 
vectorizer to replace math calls in 
vectorized loops 

Optimizations still 
on-going 

MKL-VML Vector math library component of MKL 
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Sample Performance Data for SVML
Double Precision – Cycles per Element 

See here for complete data of MKL 11.2 comparing VML execution on Haswells (desktop processor), 
Westmere and SandyBridge EP 
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/112/vml/functions/_perform
anceall.html

Code of VML similar to SVML but loop unrolling etc accelerate computation by working on multiple ( 
vector-) computations simultaneously 

Routine Sandy Bridge Haswell

HA LA EP HA LA EP

sqrt 10.51 10.51 10.51 7.08 7.08 7.08

exp 11.20 8.48 8.06 7.12 5.13 4.62

sin 16.91 16.11 8.21 11.15 6.95 4.03



Using Intel MPI for Performance
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Use Best Possible Communication Fabric

Intel MPI will select fastest available fabric by default (shared memory within a node and InfiniBand* 
across nodes – shm:dapl)

If using the OpenFabrics Enterprise Distribution (OFED*) software stack, select shm:ofa

Supported 
I_MPI_FABRICS

Description

shm Shared-memory only; intra-node default

tcp TCP/IP-capable network fabrics, such as 
Ethernet and InfiniBand* (through IPoIB*)

dapl DAPL–capable network fabrics, such as 
InfiniBand*, iWarp*, and XPMEM* (through 
DAPL*)

ofa OFA-capable network fabric including 
InfiniBand* (through OFED* verbs)

tmi TMI-capable network fabrics including Qlogic*, 
Myrinet* (through Tag Matching Interface)
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Disable Fallback for Benchmarking (and Production)

Intel MPI Library falls back from the ‘dapl’ or ‘shm:dapl’ fabric to ‘tcp’ and/or ‘shm:tcp’ 
if DAPL provider initialization failed

Set I_MPI_FALLBACK to ‘disable’ to be sure that needed fast fabric is working

- Fallback is disabled by default if I_MPI_FABRICS is set

Same result is achieved with the command line option:

$ mpirun –genv I_MPI_FALLBACK 0 …
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Use Connectionless Communication

The connectionless feature works for the ‘dapl’ and ‘tmi’ fabrics only

Provides better scalability

Significantly reduces memory requirements by reducing the number of receive 
queues

Generally advised for large jobs

$ export I_MPI_FABRICS=shm:dapl

$ export I_MPI_DAPL_UD=enable
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Use lightweight statistics

• Set I_MPI_STATS to a non-zero integer value to 
gather MPI communication statistics (max value is 10)

• Manipulate the results with I_MPI_STATS_SCOPE to 
increase effectiveness of the analysis

• Example on the right – Gromacs rank 0 with 
suggested values

• Suggested values: 

Communication Activity by actual args
Collectives
Operation       Context  Algo Comm size    Message size      Calls  Cost(%)
-------------------------------------------------------------------------------
--
Allreduce
1                    58     1          4              24          1    0.00
2                    58     1          4               4          8    0.00
3                    58     1          4               8         12    0.03
4                    58     1          4            1376        181    0.04
5                    58     1          4            1344         19    0.01
6                    58     1          4            1216          1    0.00
7                    58     1          4             224          1    0.00
8                     0     5        192               8          2    0.00
9                     0     5        192             968          1    0.00
10                    0     5        192             288          2    0.01
11                    0     5        192             768          2    0.00
Barrier
1                    62     5        160               0          1    0.00
2                     0     5        192               0          1    0.00
Bcast
...
Gather
1                    52     3          5              32         25    0.01
2                    54     3          4              36         25    0.00
3                    56     3          8              28         25    0.01
Reduce
1                    60     1         40              24          1    0.00
2                    60     1         40               4          8    0.00
3                    60     1         40               8         12    0.01
4                    60     1         40            1376        181    0.21
5                    60     1         40            1344         19    0.03
6                    60     1         40            1216          1    0.00
7                    60     1         40             224          1    0.00
Scatter
1                    62     1        160               8          1    0.00
Scatterv
1                    62     1        160          315840          2    0.03
2                    62     1        160           52640          1    0.08
===============================================================================
==

$ export I_MPI_STATS=3

$ export I_MPI_STATS_SCOPE=coll
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Choose the best collective algorithm

Use one of the I_MPI_ADJUST_<opname> knobs to change the algorithm

Recommendations:
 Focus on the most critical collective operations (see stats output)
 Run the Intel MPI Benchmarks by selecting various algorithms to find out the right 

protocol switchover points for hot collective operations
 … or use the mpitune tool

$ mpirun ‐genv I_MPI_ADJUST_REDUCE <algorithm #> …
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Select Proper Process Layout

Default process layout is that all physical cores will be used

If running hybrid applications, you might want to reduce the number of ranks/node

Set I_MPI_PERHOST or use the –perhost (/-ppn) option to override the default process 
layout:

$ mpirun –ppn <#processes per node> ‐n <#processes> …

Same can be achieved using a “machinefile”

On batch scheduler environments, the Intel MPI library respects the scheduler settings

To overwrite the batch scheduler settings (at your own risk ):

$ export I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=0
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Use Proper Process Pinning

Default pinning options are suitable for most cases

Use I_MPI_PIN_PROCESSOR_LIST to define custom map of MPI processes to CPU cores pinning

The ‘cpuinfo’ utility of the Intel MPI Library shows the processor topology

Placing the processes on physical cores: 

$ export I_MPI_PIN_PROCESSOR_LIST=allcores

Avoid sharing of common resources by adjacent MPI processes, use “map=scatter” setting:

$ export I_MPI_PIN_PROCESSOR_LIST=allcores,map=scatter

Choose to share resources by setting “map=bunch”:

$ export I_MPI_PIN_PROCESSOR_LIST=allcores,map=bunch



Copyright© 2015, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 77

Use Proper Hybrid Process Pinning

Link with thread safe library (-qopenmp / -mt_mpi)

Choose MPI threading model (SINGLE / FUNNELED / SERIALIZED / MULTIPLE ) – either using 
MPI_Init_thread(…) or env. var. I_MPI_THREAD_LEVEL_DEFAULT

$ export I_MPI_THREAD_LEVEL_DEFAULT=SINGLE

Choose distribution of MPI ranks & threads – (ranks x threads = cores)

$ mpirun –n <#ranks> ‐genv OMP_NUM_THREADS <#threads>

Pin MPI ranks using I_MPI_PIN_DOMAIN (e.g., „omp“ according to #OpenMP t.):

$ export I_MPI_PIN_DOMAIN=omp

Pin threads, e.g., KMP_AFFINITY

$ export KMP_AFFINITY=compact

If you want a nicer and more portable syntax, use OpenMP places introduced with OpenMP 4.0
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Adjust the eager / rendezvous protocol threshold

Two communication protocols:

“Eager” sends data immediately 
regardless of receive request availability 
and uses for short messages

“Rendezvous” notices receiving site on 
data pending and transfers when receive 
request is set

$ export I_MPI_EAGER_THRESHOLD=<#bytes>
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Using the MPI Performance Snapshot Tool

1. Install Intel® Trace Analyzer and Collector

2. Setup your environment

3. Run with the MPI Performance Snapshot enabled

4. Analyze your results

$ source /opt/intel/itac/9.1/bin/mpi_perf_snapshot_vars.sh

$ mpirun –mps –n 1024 ./exe

$ mpi_perf_snapshot ./stats.txt ./app_stat.txt
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New collector displays summary info immediately after end of application run

HW counters & memory usage info:

Focus on Memory & Counter Usage

==================== GENERAL STATISTICS ====================
WallClock:          284.274 sec   (All processes)

MIN:           31.998 sec   (rank 0)
MAX:           35.534 sec   (rank 7)

================== HW COUNTERS STATISTICS ==================
GFlops:    9.563   MPI:  11.28%    NON_MPI:  88.72%   

Floating-Point instructions:  45.77%
Vectorized  DP instructions:  24.69%
Memory  access instructions:  42.35%

================== MEMORY USAGE STATISTICS =================
All  processes:    256.740MB

MIN:     30.608MB  (process      7)
MAX:     33.136MB  (process      1)
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================= MPI IMBALANCE STATISTICS =================
MPI Imbalance:          207.847 sec            73,12% (All processes)

MIN:           23.044 sec            64,85% (rank  6)
MAX:           30.113 sec            88,57% (rank  1)

===================== OpenMP STATISTICS ====================
OpenMP Regions:        228.631 sec           80,43%           56 region(s) (All processes)

MIN:         25.348 sec           71,33%            7 region(s) (rank 7)
MAX:         33.124 sec           97,42%            7 region(s) (rank 1)

OpenMP Imbalance:        103.924 sec            36,56%  (All processes)
MIN:         11.522 sec            32,43%  (rank 3)
MAX:         15.057 sec            44,29%  (rank 2)

Find your MPI & OpenMP Imbalance hotspots
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Easy-to-read HTML output helps you categorize 
performance issues

Application 
Analysis to Guide

Development 
Efforts
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Full MPI Profiling via Intel® Trace Analyzer and Collector

Compare 2 communication 
profiles – focus on bottlenecks

Shows how MPI processes 
interact

Summary 
page

Time interval 
shown

Aggregation of shown 
data

Tagging & 
Filtering

Idealizer

Compare

Imbalance 
Diagram

Perf
Assistant

Settings
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The Last Slide…

The “Haswell” microarchitecture makes several performance improvements

SIMD-parallel programming is key to performance

Use implicit or explicit SIMD coding to exploit SIMD units

Tune MPI for optimal performance

Use MPI Performance Snapshot or ITAC to find MPI bottlenecks
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