NCL functions \& procedures science
 reference card
 NCL version 6.2.1
 Karin Meier-Fleischer, DKRZ
 December 04, 2014

Read the corresponding web page to get more information about a function or procedure:
http://ncl.ucar.edu/Document/Functions/index.shtml

Statistics

dtrend
Estimates and removes the least squares linear trend of the rightmost dimension from all grid points.

dtrend_lettaim

Estimates and removes the least squares linear trend of the leftmost dimension from all grid points and retains meta data.

msg

Estimates and removes the least squares linear trend of the rightmost dimension from all grid points (missing values allowed).

dirend_msg_n

Estimates and removes the least squares linear trend of the dim-th dimension from all grid points (missing values allowed).
dtrend \mathbf{n}
Estimates and removes the least squares linear trend of the given dimension from all grid points.

Estimates and removes the least squares quadratic trend of the rightmost dimension from all grid points.
dtrend_quadratic_msg_n
Estimates and removes the least squares quadratic trend of the dim-th dimension from all grid points (missing values allowed).

General applied math
arrayshift
Rearrange an array in a manner similar to Matlab's fftshift.

betainc

Evaluates the incomplete beta function.
calculate_monthly_values
Calculate monthly values [avg, sum, min, max] from high frequency temporal values.
cancor
Performs canonical correlation analysis between two sets of variables
cdft_p
Calculates the one-sided probability given a t -value and the degrees of freedom.

cdft_t

Calculates the t -value given the one-sided probability and the degrees of freedom.

center_finite_dif

Performs a centered finite difference operation on the rightmost dimension.

center finite diff_n

Performs a centered finite difference operation on the given dimension.

cfftb

 transform [Fourier Synthesis].Performs a forward complex discrete fourier transform of a real periodic sequence.

cfftf_frq_reorder

Reorders the data returned by cfftf
chiinv
Evaluates the inverse chi-squared distribution function.
covcorm
Calculates a covariance or correlation matrix.
covcorm_xy
Calculates a covariance or correlation matrix given two separate arrays.
cumsum
Calculates the cumulative sum.
decimalPlaces
Truncates or rounds to the number of decimal places specified
equiv_sample_siz
Estimates the number of independent values of a series of correlated observations
erf
escorc_n
escovc
ezfftb

ezfftf

ft2db

fft2df
mputes sample cross-covariances
Computes sample linear cross-correlations at lag 0 only.

Computes sample cross-correlations at lag 0 only,
across the given dimensions.
Computes sample cross-covariances at lag 0 only.
Perform a Fourier synthesis from real and imaginary coefficients.

Perform a Fourier analysis on a real periodic sequence

Performs a two-dimensional discrete backward Fourier transform (Fourier synthesis)
Evaluates the real error function
Evaluates the real complementary error function.
Computes sample auto-correlations
Computes sample auto-covariances

Computes sample cross-correlations.

Fourier transform (Fourier synthesis)
Performs a two-dimensional forward real discrete Fourier transform (i.e., Fourier analysis) of a real periodic array

filwgts lanczos

Calculates one-dimensional filter weights

filwgts_norma

Calculates one-dimensional filter weights based upon the normal (gaussian) distribution.
fourier_info
Performs fourier analysis on one or more periodic series.
ftest
Applies F-test for variances and returns an estimate of the statistical significance.
gamma
Evaluates the complete gamma function.
gammainc
Evaluates the incomplete gamma function.
genNormalDist
Generates a normal distribution.
inverse_matrix
Computes the inverse of a general matrix using LU factorization.
kf_filter
Extract equatorial waves by filtering in the WheelerKiladis wavenumber-frequency domain.
kolsm2_n
Use the Kolmogorov-Smirnov two-sample test to determine if two samples are from the same distribution.
kron_product
Computes the Kronecker product for two
dimensional matrices.
linrood_latwgt
Computes the latitudes and weights used by the LinRood Model.
linrood_wgt
Computes the weights used by the Lin-Rood Model.
local_max
Determines the relative maxima for a 2-dimensional array.
local_min
Determines the relative minima for a 2-dimensional array.
Ispoly
Calculates a set of coefficients for a weighted leas squares polynomial fit to the given data.
Ispoly_n
Calculates a set of coefficients for a weighted least squares polynomial fit to the given data on the given dimension.
NewCosWeight
Performs cosine of the latitude weighting on the given array.

pattern cor

Compute centered or uncentered pattern correlation.
Generates a univariate probability density
distribution (PDF).
pdfxy
Generates a joint probability density distribution.
(Please use pdfxy_conform.)

pdfxy_bin

Performs looping necessary to calculate the
bivariate (joint) probability distribution (see pdfxy).

pdfxy_conform

An interface to pdfxy that allows the input arrays to be different sizes.
quadroots
Determine roots of a quadratic equation [$a^{*} x^{\wedge} 2+$ $\left.b^{\star} x+c\right]$.
Performs basic multiple linear regression analysis.
reg_multlin_stats
Performs multiple linear regression analysis including confidence estimates and creates an ANOVA table.
regcoef
Calculates the linear regression coefficient between two variables.
regCoef
Calculates the linear regression coefficient between two variables.
regCoef_n
Calculates the linear regression coefficient between two variables on the given dimensions.
regline
Calculates the linear regression coefficient between two series.
regline_stats
Performs simple linear regression including
confidence estimates and creates an ANOVA table. rmInsufData

Sets all instances (i.e. time) of a grid point to missing if a user-prescribed percentage of points is missing.
run_cor
Calculates a running correlation
runave
Calculates an unweighted running average on the rightmost dimension.
runave_n
Calculates an unweighted running average on the given dimension.

runave_n_Wrap

Calculates an unweighted running average on the given dimension and retains metadata.

runave Wrap

Calculates an unweighted running average on the rightmost dimension and retains metadata.
sign_f90
Mimic the behavior of fortran-90's sign transfer function.
sign_matlab
Mimic the behavior of Matlab's sign function
simpeq
Integrates a sequence of equally spaced points
using Simpson's Rule.
simpne
Integrates a sequence of unequally spaced points using Simpson's three-point formula.
sindex_yrmo
Calculates the Southern Oscillation Index given two
series of year-month values
Performs nine point local smoothing on one or more 2D grids.
smth9_Wrap
Performs nine point local smoothing on one or more 2D grids and retains metadata

snindex yrmo

Calculates the Southern Oscillation Index and the noise index given two series of year-month values.
solve_linsys
Computes the solution to a real system of linear equations.
sparse_matrix_mult
Multiples a sparse matrix with a dense matrix. Function under construction. Calling arguments may change.
spcorr
Computes Spearman rank order correlation coefficient.
spcorr_n
Computes Spearman rank order correlation coefficient across the given dimension.

specx_anal

Calculates spectra of a series
specx_ci
Calculates the theoretical Markov spectrum and the lower and upper confidence curves
specxy_anal
Calculates cross spectra quantities of a series.

SqrtCosWeight

Performs square-root of the cosine of the latitude weighting on the given array.
sqsort
Sorts a singly dimensioned arrays of strings
stat2
Calculates the first two moments of the given input.
stat4
Calculates estimates of the first four moments (mean, variance, skewness, and kurtosis) of the given input.

stat_dispersion

Computes a number of robust statistics
stat_medrng
Calculates median, range, and mid-range of the given input.
stat_trim
Calculates trimmed estimates of the first two moments of the given input.
stddev
Calculates the sample standard deviation
student_t
Calculates the two-tailed probability of the Student-t distribution.
taper
Applies split-cosine-bell tapering to one or more series across the rightmost dimension.
taper n
Applies split-cosine-bell tapering to one or more series across the given dimension.

trend manken n

Mann-Kendall non-parametric test for monotonic trend plus the Theil-Sen robust estimate of linear trend.

ttest

Returns an estimate of the statistical significance and, optionally, the t-values.
variance
Computes an unbiased estimate the variance of al input points

Computes the total power spectrum as a function of latitudinal wave number
wavelet
Calculates the wavelet transform of a time series and significance levels.

wavelet_default

Calculates the wavelet transform of a time series and significance levels.
wgt_area_smooth
Smooths an array of data using a 5-point 2D areaweighted smoothing algorithm.

wgt_areaave

Calculates the area average of a quantity using weights
wgt_areaave2
Calculates the area average of a quantity using twodimensional weights
wgt_areaave_Wrap
Calculates the area average of a quantity using weights and retains metadata
wgt_arearmse
Calculates a weighted area root-mean-squaredifference between two variables

wgt_arearmse2

Calculates a weighted area root-mean-square difference (rmse) between two variables using two dimensional weights.
wgt_areasum2
Calculates the area sum (total) of a quantity using two-dimensional weights.
wgt_runave
Calculates a weighted running average across the rightmost dimension.

wgt_runave_leftdim

Calculate a weighted running average over the leftmost dimenaion (usually, "time") and return in the original order with meta data.

wgt_runave_n

Calculates a weighted running average across the given dimension.

wgt_runave_n_Wrap

Calculates a weighted running average on the given dimension and retains metadata.

wgt runave Wrap

Calculates a weighted running average on the rightmost dimension and retains metadata.

Calculates the volume average of a quantity using weights.
wgt_volave_ccm
Calculates the volume average of a quantity from the CCM using weights.

wgt_volrmse

Calculates a weighted volume root-mean-square-
difference between two variables.

wgt_volrmse_ccm

Calculates a weighted volume root-mean-squaredifference between two variables from the CCM.
wk_smooth121
Performs a specialized 1-2-1 filter for WheelerKiladis plots.
zonalAve
Computes a zonal average of the input array
Dimension routines
dim_acumrun_n
Calculates individual accumulated sums of sequences ('runs') of a specified length
dim_avg
Computes the average of a variable's rightmost dimension at all other dimensions.
dim_avg_n
Computes the average of a variable's given dimension(s) at all other dimensions.
dim avg n Wrap
Computes the average of a variable's given dimensions at all other dimensions and retains metadata.
dim_avg_wgt
Computes the weighted average of a variable's rightmost dimension at all other dimensions.
dim_avg_wgt_n
Computes the weighted average of a variable's given dimension at all other dimensions.
dim_avg_wgt_n_Wrap
Computes the weighted average of a variable's given dimension at all other dimensions and retains metadata.

dim_avg_wgt_Wrap

Computes the weighted average of a variable's rightmost dimension at all other dimensions and retains metadata.
dim_avg_Wrap
Computes the average of a variable's rightmost dimension at all other dimensions and retains metadata.
dim_cumsum
Calculates the cumulative sum along the rightmost dimension.
dim_cumsum_n
Calculates the cumulative sum along the given dimension(s).
dim_cumsum_n_Wrap
Calculates the cumulative sum along the given dimension(s) and retains meta data.
dim_cumsum_Wrap
Calculates the cumulative sum along the rightmost
dimension and retains meta data.
dim_gamfit_n
Fit data to the two parameter gamma distribution.
dim_max
Finds the maximum of a variable's rightmost dimension at all other dimensions.
dim_max_n
Finds the maximum of a variable's given dimensions at all other dimensions.

dim_max_n_Wrap

Computes the maximum of a variable's given dimensions at all other dimensions and retains metadata.
dim_median
Computes the median of a variable's rightmost
dimension at all other dimensions.
dim_median_n
Computes the median of a variable's given dimensions at all other dimensions
dim_min
Finds the minimum of a variable's rightmost dimension at all other dimensions.
dim_min_n
Finds the minimum of a variable's given dimensions at all other dimensions.
dim_min_n_Wrap
Computes the minimum of a variable's given dimensions at all other dimensions and retains metadata.
dim num
Calculates the number of True values of a variable's rightmost dimension at all other dimensions
dim_num_n
Calculates the number of True values of a variable's given dimensions at all other dimensions.
dim_numrun_n
Counts the number of "runs" (sequences) within a series containing zeros and ones.
dim_pqsort
Computes the permutation vector generated by sorting the $\mathrm{n}-1$ th (rightmost) dimension.
dim_pqsort_n
Computes the permutation vector generated by sorting the given dimension
dim_produc
Computes the product of a variable's rightmos dimension at all other dimensions.
dim_product_n
Computes the product of a variable's given dimension(s) at all other dimensions.
dim_rmsd
Computes the root-mean-square-difference between two variables' rightmost dimension at all other dimensions.
dim_rmsd_n
Computes the root-mean-square-difference between two variables' given dimensions at all other dimensions.
dim_rmsd_n_Wrap
Computes the root-mean-square-difference between
two variables' given dimensions at all other dimensions.
dim_rmsd_Wrap
Computes the root-mean-square-difference between two variables' rightmost dimension at all other dimensions.
dim_rmvmean
Calculates and removes the mean of the (rightmost) dimension at all other dimensions.
dim_rmvmean_n
Calculates and removes the mean of the given dimension(s) at all other dimensions.
dim_rmvmean_n_Wrap
Calculates and removes the mean of the given dimensions at all other dimensions and retains metadata.
dim_rmvmean_Wrap
Calculates and removes the mean of the (rightmost) dimension at all other dimensions and retains metadata.
dim_rmvmed
Calculates and removes the median of the
(rightmost) dimension at all other dimensions.
dim_rmvmed_n
Calculates and removes the median of the given dimension(s) at all other dimensions.
dim_rmvmed_n_Wrap
Calculates and removes the median of the given dimensions at all other dimensions and retains metadata.
dim_rmvmed_Wrap
Calculates and removes the median of the (rightmost) dimension at all other dimensions and retains metadata.

dim_standardize

Calculates standardized anomalies of the rightmost dimension at all other dimensions.

dim_standardize_n

Calculates standardized anomalies of the given dimension(s) at all other dimensions.
dim_standardize_n_Wrap
Calculates standardized anomalies of the given dimensions at all other dimensions and retains metadata.
dim_standardize_Wrap
Calculates standardized anomalies of the rightmost dimension at all other dimensions and retains metadata.
dim_stat4
Computes the first four moments (average, variance, skewness, and kurtosis) of the rightmost dimension for all other dimensions.
dim_stat4_n
Computes the first four moments (average, variance,
skewness, and kurtosis) of the given dimension(s)
for all other dimensions.
dim_stddev
Computes the population standard deviation of a variable's rightmost dimension at all other dimensions

dim_stddev_n

Computes the population standard deviation of a variable's given dimension(s) at all other dimensions.

dim_stddev_n_Wrap

Computes the population standard deviation of a variable's given dimension(s) at all other dimensions and retains metadata

dim_stddev_Wrap

Computes the population standard deviation of a variable's rightmost dimension at all other dimensions and retains metadata.

dim_sum

Computes the arithmetic sum of a variable's
rightmost dimension at all other dimensions.
Computes the arithmetic sum of a variable's given dimension(s) at all other dimensions.
dim_sum_n_Wrap
Computes the arithmetic sum of a variable's given dimensions at all other dimensions and retains metadata.

_ wgt

Computes the weighted sum of a variable's rightmost dimension at all other dimensions.
dim_sum_wgt_n
Computes the weighted sum of a variable's given dimension at all other dimensions.
dim_sum_wgt_n_Wrap
Computes the weighted sum of a variable's given dimension at all other dimensions and retains metadata.
dim_sum_wgt_Wrap
Computes the weighted sum of a variable's rightmost dimension at all other dimensions and retains metadata.

dim_sum_Wrap

Computes the arithmetic sum of a variable's rightmost dimension at all other dimensions and retains metadata.
dim variance
Computes the unbiased estimates of the variance of a variable's rightmost dimension.
dim_variance_n
Computes the unbiased estimates of the variance of a variable's given dimension(s) at all other dimensions.

dim_variance_n_Wrap

Computes unbiased estimates of the variance of a variable's given dimension(s) at all other dimensions and retains metadata.

dim_variance_Wrap

Computes unbiased estimates of the variance of a
variable's rightmost dimension at all other dimensions and retains metadata.

Cumulative distribution functions

cdfbin_p

Calculates the binomial density of a cumulative

distribution function.

cdfbin_pr

Calculates the probability of success of each trial o a cumulative distribution function.
cdfbin_s
Calculates the number of successes of a cumulative distribution function.
cdfbin xn
Calculates the number of binomial trials of a cumulative distribution function.
cdfchi_p
Calculates the integral of a cumulative chi-square distribution function.
cdfchi_x
Calculates the upper limit of integration of a cumulative chi-square distribution function.
cdfgam_p
Calculates the integral of a cumulative gamma distribution function.
cdfgam_x
Calculates the upper limit of integration of a cumulative gamma distribution function.
cdfnor_p
Calculates the integral of a cumulative normal distribution function.
cdfnor_x
Calculates the upper limit of integration of a cumulative normal distribution function.

Empirical orthogonal functions
eof2data
Reconstructs a data set from EOFs and EOF time series.
eofcor
Calculates empirical orthogonal functions via a correlation matrix (NCL's original function).
eofcor_ts
Calculates the time series of the amplitudes associated with each eigenvalue in an EOF which was calculated using a correlation matrix.

eofcor_Wrap

Calculates empirical orthogonal functions and retains meta data. (NCL's original function).
eofcov
Calculates empirical orthogonal functions via a covariance matrix (original version).
eofcov_ts
Calculates the time series of the amplitudes associated with each eigenvalue in an EOF which was calculated using a covariance matrix.

eofcov_Wrap

Calculates empirical orthogonal functions and retains meta data. (NCL's original EOF function)
eofunc
Compute empirical orthogonal functions (EOFs, aka: Principal Component Analysis).
eofunc_ts
Calculates the time series of the amplitudes associated with each eigenvalue in an EOF.
eofunc ts Wrap
Calculates the time series of the amplitudes associated with each eigenvalue in an EOF and retains metadata.
eofunc_varimax
Rotates EOFs using the using Kaiser row normalization and the varimax criterion
eofunc_varimax_reorder
Reorder the results returned by eof_varimax into descending order by percent variance explained.

Rotates EOFs using the using Kaiser row normalization and the varimax criterion and retains metadata.
eofunc_Wrap
Computes empirical orthogonal functions (aka: Principal Component Analysis, Eigen Analysis) and retains metadata.

Group creators and query

filegrpdef
Defines a list of group (names), for a supported file or group.
getfilegrpnames
Returns an array of file group names in the specified supported file.

Interpolation

area_conserve_remap

Performs areal conservative remapping from one rectilinear grid to another.
area_conserve_remap_Wrap
Performs areal conservative remapping from one rectilinear grid to another and preserves meta data

Interpolates from high resolution rectilinear grids to low resolution recitlinear grids using local area averaging.
area_hi2lores Wrap
Interpolates from high resolution rectilinear grids to low resolution rectilinear grids using local area averaging. (retains meta data)
bin_avg
Calculates gridded binned averages and counts onto a rectilinear grid using randomly spaced data.

Calculates an approximating cubic spline for the input data, one 1-dimensional section at a time.

Calculates an approximating cubic spline for the input data, one 1-dimensional section at a time.
csa1s
Calculates an approximating cubic spline for the input data, one 1-dimensional section at a time.

csa1x

Calculates an approximating cubic spline for the input data, one 1-dimensional section at a time.
csa1xd
Calculates an approximating cubic spline for the input data, one 1-dimensional section at a time. dimension ap aproxim dimensional input data

Calculates an approximating cubic spline for two dimensional input data.

Calculates an approximating cubic spline for two dimensional input data.

Calculates an approximating cubic spline for two dimensional input data
dimensional input
Calculates an approximating cubic spline for twodimensional input data.
dimensional input data.
Calculates an approximating cubic spline for threedimensional input data. dimensional input data.

Calculates an approximating cubic spline for threedimensional input data

Calculates an approximating cubic spline for threedimensional input data.

Calculates an approximating cubic spline for threedimensional input data.

Calculates an approximating cubic spline for threedimensional input data. dimensional input data. dimensional input data.

Calculates an approximating cubic spline for threedimensional input data.

Converts spherical coordinates (lat/lon) to Cartesian coordinates on a unit sphere.

Uses tension splines to interpolate unstructured (randomly-spaced) data on a unit sphere to data values on a rectilinear grid.

cssgrid_Wrap

Uses tension splines to interpolate unstructrued (randomly-spaced) data on a unit sphere to data values on a rectilinear grid (retains metadata).
csstri
Calculates a Delaunay triangulation of data randomly positioned on the surface of a sphere.
csvoro
Determines Voronoi polygons for data randomly positioned on a sphere and returns vertices for the one surrounding a specified input point.
curvilinear_to_SCRIP
Writes the description of a curvilinear grid to a SCRIP file.
dsgetp
Gets parameters for Dsgrid routines.
Interpolates data from an unstructured (randomlyspaced) grid to a rectilinear grid using inverse distance weighted interpolation.

dsgrid3

Interpolates float data from an unstructured (randomly-spaced) grid to a 3D grid using inverse distance weighted interpolation.

dspnt2

dspnt3
Interpolates 2-D data at specified points.
Interpolates 3-D data at specified points.
dssetp
Sets parameters for Dsgrid routines.

Regrids data from one lat/lon grid to another, using ESMF software.
ESMF_regrid_gen_weights
Writes a weight file using the offline ESMF weight generator.
ESMF_regrid_with_weights
Using the provided weight file, regrids data from one lat/lon grid to another.

ftcurv

Calculates an interpolatory spline through a sequence of functional values.
ftcurvd
Calculates the derivatives of an interpolatory spline under tension.

ftcurvi

Calculates integrals of an interpolatory spline under tension between two user-specified limits.

ftcurvp

Calculates an interpolatory spline under tension through a sequence of functional values for a periodic function.
ftcurvpi
Calculates an integral of an interpolatory spline between two specified points.

ftcurvps

Calculates a smoothing spline.
ftcurvs
Calculates a smoothing spline.
Retrieves control parameters for Fitgrid routines
Calculates an interpolatory spline for parametric curves.
ftkurvd
Calculates an interpolatory spline for parametric curves; it also calculates first and second derivatives of the interpolatory spline.
ftkurvp
Calculates an interpolatory spline under tension through a sequence of points in the plane forming a closed curve.

ftkurvpd

Calculates an interpolatory spline for closed parametric curves; it also calculates first and second derivatives of the interpolatory spline.

ftsetp

idsfft
int2p
Interpolates 2D random data.
Interpolates pressure levels to a different set of pressure levels.
int2p_n
Interpolates pressure levels to a different set of pressure levels on the given dimension
int2p_n_Wrap
Interpolates pressure levels to a different set of pressure levels and returns meta data.
int2p_Wrap
Interpolates pressure levels to a different set of
pressure levels and returns meta data.
latlon_to_SCRIP
Writes the description of a lat/lon grid to a SCRIP file.
linint1
Interpolates from one series to another using piecewise linear interpolation across the rightmost dimension.
linint1_n
Interpolates from one series to another using piecewise linear interpolation across the given dimension.

linint1_n_Wrap

Interpolates from one series to another using piecewise linear interpolation across the given dimension, and retains metadata.
linint1_Wrap
Interpolates from one series to another using piecewise linear interpolation, and retains metadata.
linint2
Interpolates from a rectilinear grid to another rectilinear grid using bilinear interpolation.

linint2_points

Interpolates from a rectilinear grid to an unstructured grid using bilinear interpolation.
linmsg
Linearly interpolates to fill in missing values.
linmsg_n
Linearly interpolates to fill in missing values, given the dimension to do the interpolation across.
natgrid
Interpolates data from an unstructured (randomly spaced) grid to a rectilinear grid using natural neighbor interpolation.

natgrid_Wrap

Interpolates data from an unstructured (randomlyspaced) grid to a rectilinear grid using natural neighbor interpolation and retains metadata.

Retrieves an aspect at a specified coordinate position.

nngetaspects

Retrieves an aspect at a specified coordinate position.
nngetp
Retrieves control parameters for Natgrid routines.
Retrieves a slope at a specified coordinate position.
nngetslopes
Retrieves a slope at a specified coordinate position.
nngetwts
Retrieves natural neighbors and weights for the function values at those neighbors

Retrieves natural neighbors and weights for the function values at those neighbors.
nnpnt
Interpolates from 2D random data to get values at a specified set of points.

nnpntend

Terminates interpolation from 2D random data to get values at a specified set of points.

nnpntendd

Terminates interpolation from 2D random data to get values at a specified set of points.
nnpntinit
Initializes internal quantities, for given input data, to allow subsequent nnpnt calls to interpolate at specified points.

nnpntinitd

Initializes internal quantities, for given input data, to allow subsequent nnpntd calls to interpolate at specified points.

nnpntinits

Initializes internal quantities, for given input data, to allow subsequent nnpnts calls to interpolate at specified points.
nnsetp
Sets control parameters for Natgrid routines
obj_anal_ic
Iterative improvement objective analysis.
obj_anal_ic_deprecated
Iterative correction objective analysis (Cressman Barnes).
obj_anal_ic_Wrap
Iterative improvement objective analysis and returns meta data.
poisson grid fill
Replaces all missing (_FillValue) values in a grid with values derived from solving Poisson's equation via relaxation.

Interpolates data on a curvilinear grid (i.e. RCM, WRF, NARR) to an unstructured grid.
rem2rgrid
Interpolates data on a curvilinear grid (i.e. RCM,
WRF, NARR) to a rectilinear grid.
rectilinear_to_SCRIP
Writes the description of a rectilinear grid to a SCRIP file.
rgrid2rcm
Interpolates data on a rectilinear lat/lon grid to a curvilinear grid like those used by the RCM, WRF and NARR models/datasets.
shgetnp
Finds the nearest point, or points (in a specified se of points), to a given point in 3-space.
shgetp
Retrieves control parameters for Shgrid routines
shgrid
Interpolates data from an unstructured grid to a grid in 3-space.

shsetp

Sets control parameters for Shgrid routines.
sigma2hybrid
Interpolates from sigma to hybrid coordinates.
trop wmo
Determines the level of the thermal tropopause.

unstructured to ESMF

Writes the description of an unstructured grid to an ESMF file.
wrf_interp_1d
Linearly interpolates a one-dimensional variable in the vertical.
wrf_interp_2d_xy
Extracts a cross section from a given input field.
wrf_interp_3d_z
Interpolates to a specified pressure/height level.
wrf_user_intrp2d
Interpolates ARW WRF 2D model data along a give line.
wrf_user_intrp3d
Interpolates ARW WRF model data vertically or horizontally
wrf_user_unstagger
Unstaggers an input variable along a specified dimension

Random number generators

generate_2d_array
Generates a "nice" 2D array of pseudo random data, especially for use in 2D graphics
generate_resample_indices
Generate indices (subscripts) for resampling: with and without replacement.
generate_sample_indices
Generate indices (subscripts) for resampling: with and without replacement.
generate_unique_indices Generate unique random indices (subscripts).
rand
Generates a pseudo random number
random_chi
Generates random numbers using a chi-squared distribution.
random_gamma
Generates random numbers using a gamma distribution.
random_normal
Generates random numbers using a normal distribution.
random_setallseed
Sets initial seeds for random number generators.
random_uniform
Generates random numbers using a uniform range distribution.
srand
Establishes a seed for the rand function.

Regridding

area_conserve_remap
Performs areal conservative remapping from one rectilinear grid to another.
area conserve remap Wrap
Performs areal conservative remapping from one
rectilinear grid to another and preserves meta data.
area_hi2lores
Interpolates from high resolution rectilinear grids to
low resolution recitlinear grids using local area averaging.
area_hi2lores_Wrap
Interpolates from high resolution rectilinear grids to low resolution rectilinear grids using local area averaging. (retains meta data)
bin_avg
Calculates gridded binned averages and counts onto a rectilinear grid using randomly spaced data.

curvilinear_to_SCRIP

Writes the description of a curvilinear grid to a SCRIP file.
ESMF_regrid
Regrids data from one lat/lon grid to another, using ESMF software.
ESMF_regrid_gen_weights
Writes a weight file using the offline ESMF weight generator.
ESMF_regrid_with_weights
Using the provided weight file, regrids data from one lat/lon grid to another.
f2fosh
Interpolates a scalar quantity from a fixed grid (including pole points) to a fixed-offset grid.
f2fosh_Wrap
Interpolates a scalar quantity from a fixed grid (including pole points) to a fixed-offset grid (retains metadata).
f2foshv
Interpolates a vector quantity on a fixed grid (including pole points) to a fixed-offset grid.
f2foshv_Wrap
Interpolates a vector quantity on a fixed grid (including pole points) to a fixed-offset grid (retains metadata).
f2fsh Interpolates a scalar quantity from one fixed grid to another.
f2fsh_Wrap
Interpolates a scalar quantity from one fixed grid to another (retains metadata).
f2fshv
Interpolates a vector quantity from one fixed grid to another.
f2fshv_Wrap
Interpolates a vector quantity from one fixed grid to another (retains metadata).
f2gsh
Interpolates a scalar quantity from a fixed grid to a Gaussian grid (with optional truncation).
f2gsh_Wrap
Interpolates a scalar quantity from a fixed grid to a Gaussian grid (with optional truncation) (retains metadata).

f2gshv

Interpolates a vector quantity on a fixed grid to a Gaussian grid (optional truncation).
f2gshv_Wrap
Interpolates a vector quantity on a fixed grid to a Gaussian grid (optional truncation) (retains
metadata).

forfsh

Interpolates a scalar quantity from a fixed-offset grid to a fixed grid.
fo2fsh_Wrap
Interpolates a scalar quantity from a fixed-offset grid to a fixed grid (retains metadata).
fo2fshv
Interpolates a vector quantity from a fixed-offset grid to a fixed grid.
fo2fshv_Wrap
Interpolates a vector quantity from a fixed-offset grid to a fixed grid (retains metadata).
ftsurf
Calculates an interpolatory surface passing through a rectangular grid of function values.
g2fsh
Interpolates a scalar quantity from a Gaussian grid to a fixed grid.
g2fsh_Wrap
Interpolates a scalar quantity from a Gaussian grid to a fixed grid (retains metadata)
g2fshv
Interpolates a vector quantity from a Gaussian grid to a fixed grid.

g2fshv_Wrap

Interpolates a vector quantity from a Gaussian grid to a fixed grid (retains metadata).
g2gsh
Interpolates a scalar quantity from one Gaussian grid to another (with optional truncation).
g2gsh_Wrap
Interpolates a scalar quantity from one Gaussian grid to another (with optional truncation) (retains metadata).
g2gshv
Interpolates a vector quantity from one Gaussian to another (optional truncation).
g2gshv_Wrap
Interpolates a vector quantity from one Gaussian to another (optional truncation) (retains metadata).
latlon_to_SCRIP
Writes the description of a lat/lon grid to a SCRIP
file.
linint2
Interpolates from a rectilinear grid to anothe rectilinear grid using bilinear interpolation.
linint2_points
Interpolates from a rectilinear grid to an unstructured grid using bilinear interpolation.
linint2_points_Wrap
Interpolates from a rectilinear grid to an unstructured grid using bilinear interpolation, and retains metadata.

linint2_Wrap

Interpolates from a rectilinear grid to another rectilinear grid using bilinear interpolation, and retains metadata.
obj_anal_ic
Iterative improvement objective analysis.

obj anal ic deprecated

Iterative correction objective analysis (Cressman Barnes).
obj_anal_ic_Wrap
Iterative improvement objective analysis and returns meta data.
poisson grid fill
Replaces all missing (_FillValue) values in a grid with values derived from solving Poisson's equation via relaxation.
pop_remap
Regrids a POP ocean model grid to another grid
PopLatLon
Regrids a scalar variable on a POP grid to a lat/lon grid or vice-versa.
PopLatLonV
Converts vectors on a POP grid to a lat/lon grid and vice-versa.

Interpolates data on a curvilinear grid (i.e. RCM WRF, NARR) to an unstructured grid
rcm2points_Wrap
Interpolates data on a curvilinear grid (i.e. RCM,
WRF, NARR) to an unstructured grid and retains metadata

Interpolates data on a curvilinear grid (i.e. RCM, WRF, NARR) to a rectilinear grid.

rcm2rgrid_Wrap

Interpolates data on a curvilinear grid (i.e. RCM, WRF, NARR) to a rectilinear grid and retains metadata.
rectilinear_to_SCRIP
Writes the description of a rectilinear grid to a SCRIP file.
rgrid2rcm
Interpolates data on a rectilinear lat/lon grid to a curvilinear grid like those used by the RCM, WRF and NARR models/datasets.
rgrid2rcm_Wrap
Interpolates data on a rectilinear lat/lon grid to a curvilinear grid like those used by the RCM, WRF and NARR models/datasets and retains metadata.
triple2grid
Places unstructured (randomly-spaced) data onto the nearest locations of a rectilinear grid.

Places unstructured (randomly-spaced) data onto the nearest locations of a curvilinear grid.

triple2grid_Wrap

Places unstructured (randomly-spaced) data onto the nearest locations of a rectilinear grid and retains metadata.

unstructured_to_ESM

Writes the description of an unstructured grid to an ESMF file.

RIP

wrf_cape_2d
Computes maximum convective available potential
energy (CAPE), maximum convective inhibition (CIN), lifted condensation level (LCL), and level of free convection (LFC).
wrf_cape_3d
Computes convective available potential energy (CAPE) and convective inhibition (CIN).

Singular value decomposition
 \section*{dgeevx_lapack}

Given a square (N, N) real nonsymmetric matrix, compute the eigenvalues and, optionally, the left and/or right eigenvectors via the LAPACK subroutine dgeevx.

svd_lapack

Calculates the singular value decomposition of a general rectangular matrix.
svdcov
Uses singular value decomposition and returns the left and right homogeneous and heterogeneous arrays associated with the two input datasets.

svdcov sv

Uses singular value decomposition to return the left and right singular vectors associated with the two input datasets.

svdstd

Uses singular value decomposition and returns the left and right homogeneous and heterogeneous arrays associated with the two input datasets.

svdstd_sv

Uses singular value decomposition to return the lef and right singular vectors associated with the two input datasets

Spherical harmonic routines
dv2uvF
Computes the divergent (irrotational) wind components for a fixed grid via spherical harmonics.
dv2uvf
Computes the divergent (irrotational) wind components for a fixed grid via spherical harmonics.

dv2uvF_Wrap

Computes the divergent (irrotational) wind components for a fixed grid via spherical harmonics and retains metadata
dv2uvG
Computes the divergent (irrotational) wind components for a gaussian grid via spherical harmonics.
dv2uvg
Computes the divergent (irrotational) wind components for a gaussian grid via spherica harmonics.
dv2uvG_Wrap
Computes the divergent (irrotational) wind components for a gaussian grid via spherical harmonics and retains metadata
exp_tapersh
Performs tapering (filtering) of the spherical harmonic coefficients

exp_tapersh_wgts

Calculates weights which can be used to perform tapering (filtering) of spherical harmonic coefficients.

exp_tapershC

Performs tapering (filtering) of the spherical harmonic coefficients

get_sphere_radius

Retrieves the radius of a sphere used in spherical harmonic routines.

gradsf

Computes the gradient of an array that is on a fixed grid using spherical harmonics
gradsg
Computes the gradient of an array that is on a gaussian grid using spherical harmonics.
igradsf
Computes a scalar array from its gradient components on a fixed grid using spherical harmonics.
igradsF
Computes a scalar array from its gradient components on a fixed grid using spherical harmonics.
igradsg
Computes a scalar array from its gradient components on a gaussian grid using spherica harmonics.
igradsG
Computes a scalar array from its gradient components on a gaussian grid using spherical harmonics.

ilapsf

ilapsF
harmonics.

Inverts the Laplacian (on a fixed grid) using spherical harmonics.

ilapsF_Wrap

Inverts the Laplacian (on a fixed grid) using spherica harmonics and retains metadata.
ilapsg
Inverts the Laplacian (on a gaussian grid) using spherical harmonics.

ilapsG

Inverts the Laplacian (on a gaussian grid) using spherical harmonics.
nverts the Laplacian (on a gaussian grid) using spherical harmonics and retains metadata
ilapvf
Inverts the vector Laplacian (on a fixed grid) using spherical harmonics.

ilapvg

Inverts the vector Laplacian (on a gaussian grid) using spherical harmonics

lapsF

Computes the Laplacian using spherical harmonics, given a scalar z on a fixed grid.
lapsf

Computes the Laplacian using spherical harmonics given a scalar z on a gaussian grid
lapsg
Computes the Laplacian using spherical harmonics, given a scalar z on a gaussian grid.
lapvf
Computes the vector Laplacian using spherical harmonics, given a vector quantity (u, v) on a fixed grid.
lapvg
Computes the vector Laplacian using spherica harmonics, given a vector quantity (u, v) on a gaussian grid.
Ideruvf
Computes the latitudinal derivatives using spherical harmonics, given vector components (u, v) on a fixed grid.
Ideruvg
Computes the latitudinal derivatives using spherica harmonics, given vector components (u,v) on a gaussian grid

rhomb_trunc

Performs rhomboidal truncation on spherica harmonic coefficients

rhomb_trunC

Performs rhomboidal truncation on spherical harmonic coefficients.

set_sphere_radius

Sets the radius of a sphere used in spherica harmonic routines
sfvp2uvf
Computes the wind components given stream function and velocity potential (on a fixed grid) via spherical harmonics.
sfvp2uvg
Computes the wind components given stream
function and velocity potential (on a gaussian grid) via spherical harmonics.
shaeC
Computes spherical harmonic analysis of a scalar field on a fixed grid via spherical harmonics.

Computes spherical harmonic analysis of a scalar field on a fixed grid via spherical harmonics.
shagC
Computes spherical harmonic analysis of a scalar field on a gaussian grid via spherical harmonics.
shagc
Computes spherical harmonic analysis of a scalar field on a gaussian grid via spherical harmonics.
shsec
Computes spherical harmonic synthesis of a scalar quantity on a fixed grid via spherical harmonics.
shseC
Computes the spherical harmonic synthesis of a scalar quantity on a fixed grid via spherical harmonics.

Computes spherical harmonic synthesis of a scalar quantity on a gaussian grid via spherical harmonics
shsgC
Computes the spherical harmonic synthesis of a scalar quantity on a gaussian grid via spherical harmonics.
shsgc_R42
Computes spherical harmonic synthesis of a scalar quantity via rhomboidally truncated (R42) spherical harmonic coefficients onto a (108x128) gaussian grid.

shsgc_R42_Wrap

Computes spherical harmonic synthesis of a scalar quantity via rhomboidally truncated (R42) spherical harmonic coefficients onto a (108x128) gaussian grid. (creates metadata).

Performs triangular truncation on spherical harmonic coefficients.
tri trunc
Performs triangular truncation on spherical harmonic coefficients.

uv2dvf

Computes the divergence using spherical harmonics given the u and v wind components on a fixed grid.
uv2dvF
Computes the divergence using spherical harmonics given the u and v wind components on a fixed grid.

uv2dvF_Wrap

Computes the divergence using spherical harmonics given the u and v wind components on a fixed grid (retains metadata).
uv2dvg
Computes the divergence using spherical harmonics given the u and v wind components on a gaussian grid.
uv2dvG
Computes the divergence using spherical harmonics given the u and v wind components on a gaussian grid.

uv2dvG_Wrap

Computes the divergence using spherical harmonics given the u and v wind components on a gaussian grid (retains metadata)
uv2sfvpF
Computes the stream function and velocity potential via spherical harmonics given u and v on a fixed grid.
uv2sfvpf
Computes the stream function and velocity potential via spherical harmonics given u and v on a fixed grid.
uv2sfvpG
Computes the stream function and velocity potential via spherical harmonics given u and v on a gaussian grid.
uv2sfvpg
Computes the stream function and velocity potential via spherical harmonics given u and v on a gaussian

grid.

Computes the vorticity and divergence via spherical harmonics, given the u and v wind components on a fixed grid.
uv2vrdvf
Computes the vorticity and divergence via spherical harmonics, given the u and v wind components on a fixed grid.

uv2vrdvg

Computes the vorticity and divergence via spherical harmonics, given the u and v wind components on a gaussian grid.

uv2vrdvG

Computes the vorticity and divergence via spherical harmonics, given the u and v wind components on a gaussian grid.

uv2vrF

Computes the vorticity via spherical harmonics,
given the u and v wind components on a fixed grid
Computes the vorticity via spherical harmonics,
given the u and v wind components on a fixed grid
uv2vrF_Wrap
Computes the vorticity via spherical harmonics, given the u and v wind components on a fixed grid (retains metadata).
uv2vrG
Computes the vorticity via spherical harmonics,
given the u and v wind components on a gaussian grid.

uv2vrg

Computes the vorticity via spherical harmonics,
given the u and v wind components on a gaussian grid.
uv2vrG_Wrap
Computes the vorticity via spherical harmonics, given the u and v wind components on a gaussian grid (retains metadata).
vhaeC
Computes vector spherical harmonic analysis of vector fields on a fixed grid via spherical harmonics.

Computes vector spherical harmonic analysis of vector fields on a fixed grid via spherical harmonics.

Computes vector spherical harmonic analysis of vector fields on a gaussian grid via spherical harmonics.
vhagc
Computes vector spherical harmonic analysis of vector fields on a gaussian grid via spherical harmonics.

vhseC

Computes vector spherical harmonic syntheses of vector fields on a fixed grid via spherical harmonics.
vhsec

Computes vector spherical harmonic syntheses of vector fields on a fixed grid via spherical harmonics.

Computes vector spherical harmonic syntheses of vector fields on a gaussian grid via spherical harmonics.
vhsgC
Computes vector spherical harmonic syntheses of vector fields on a gaussian grid via spherica harmonics.

Computes the rotational wind components via spherical harmonics, given an array containing relative vorticity on a fixed grid.
vr2uvF
Computes the rotational wind components via spherical harmonics, given an array containing relative vorticity on a fixed grid

vr2uvF_Wrap

Computes the rotational wind components via spherical harmonics, given an array containing relative vorticity on a fixed grid (retains metadata).

vr2uvg

Computes the rotational wind components via spherical harmonics, given an array containing relative vorticity on a gaussian grid.

vr2uvG

Computes the rotational wind components via spherical harmonics, given an array containing relative vorticity on a gaussian grid.

Wrap spherical harmonics, given an array containing relative vorticity on a gaussian grid (retains metadata).
vrdv2uvf
Computes the wind components via spherical harmonics, given vorticity and divergence on a fixed grid.

vrdv2uvF

Computes the wind components via spherical harmonics, given vorticity and divergence on a fixed grid.
vrdv2uvg
Computes the wind components via spherical harmonics, given vorticity and divergence on a gaussian grid.
vrdv2uvG
Computes the wind components via spherical harmonics, given vorticity and divergence on a gaussian grid.

Lat/lon functions

add90LatX

Adds two fake pole points (90 S and 90 N) to the rightmost dimension of the given data.

add90LatY

Adds two fake pole points (90S and 90N) to the leftmost dimension of the given data.

area_poly_sphere

Calculates the area enclosed by an arbitrary polygon on the sphere.

bin avg

Calculates gridded binned averages and counts onto a rectilinear grid using randomly spaced data.
bin_sum
Calculates binned sums and counts over multiple invocations of the procedure onto a ectilinear grid.
gaus
Computes gaussian latitudes and weights
gaus_lobat
Computes gaussian latitudes and weights using Gauss-Lobatto quadrature.
gaus_lobat_wg
Computes Gauss-Lobatto weights given a onedimensional array of Gauss-Lobatto latitudes.

Finds the acute angle between two great circles on the globe.
Tests clockwise/counterclockwise ordering of points on spherical polygon.
gc_dangle
Finds the directed angle between two great circles having a specified intersection point.
gc_inout
Determines if a list of lat/lon specified points are inside or outside of spherical lat/lon polygon(s).

Finds the great circle distance (true surface distance) between two points on the globe and interpolates points along the great circle.
Determines if a point on the globe lies on a specified great circle arc.
gc_pnt2gc
Finds the angular distance from a point to a great circle.
Finds the area of a quadrilateral patch on the unit sphere.
gc_tarea
Finds the area of a triangular patch on the unit sphere.

getind_latlon2d

Finds the indices (subscripts) of two-dimensional
latitude/longitude arrays closest to a user specified latitude/longitude coordinate pair

landsea_mask

Returns a grid that contains a land sea mask given
any latitude and longitude array.

latGau

Generates gaussian latitudes and associated metadata.
latGauWgt
Generates gaussian weights and associated metadata.
latGlobeF
Generates latitudes and associated metadata for a global fixed grid
latGlobeFo
Generates latitudes and associated metadata for a

global fixed offset grid.

latlon2utm

Converts from lat/lon to UTM using a specified datum.

latRegWgt

Generates [sin(lat+dlat/2)-sin(lat-dlat/2) weights for equally spaced (regular) global grids that will sum to 2.0.

IonFlip
Reorders an array about the central longitude coordinate variable (rectilinear grids only).
IonGlobeF
Generates longitudes and associated metadata for a global fixed grid.

IonGlobeFo

Generates longitudes and associated metadata for a global fixed offset grid.
IonPivot
Pivots about a user specified longitude (rectilinear grids only).
nggcog
Calculates the latitudes and longitudes of a set of points approximating a circle at a given point on the surface of the globe.

niceLatLon2D

Check two dimensional map coordinates to see i they have a "nice" structure
NormCosWgtGlobe
Create normalized cosine weights that sum to 2.0. plt_pdfxy

Creates a nice plot of the joint probability array created by the pdfxy function.
region_ind
Returns the indices (subscripts) of two-dimensional latitude/longitude arrays that span user specified latitude/longitude boundaries.

utm2latlon

Converts from UTM to lat/lon using a specified datum.
wrf_ij_to_II
Finds the nearest longitude, latitude locations to the specified model grid indices (i,j).
wrf_ll_to_ij
Finds the nearest model grid indices (i,j) to the
specified location(s) in longitude and latitude.
wrf_user_ij_to_l
Finds the nearest longitude, latitude locations to the specified model grid indices (i,j).
wrf_user_ll_to_ij
Finds the nearest model grid indices (i,j) to the specified location(s) in longitude and latitude.

Metadata routines

assignFillValue
Transfers the _FillValue attribute from one variable to another.
copy_VarAtts
Copies all of a variable's attributes from one variable to another.

copy VarCoords

Copies all named dimensions and coordinate variables from one variable to another.
copy_VarCoords_1
Copies all named dimensions and coordinate variables from one variable to another except for the rightmost dimension

copy VarCoords 2

Copies all named dimensions and coordinate variables from one variable to another except for the rightmost two dimensions

Copies all attributes, named dimensions and coordinate variables from one variable to another.

Returns the default missing value for the given
variable type.
VarAtts
Deletes one or more attributes associated with a variable.
getFillValue
Retrieves the _FillValue of a variable, if present. getvaratts

Returns a list of attribute names for the given variable or file pointer.

Returns a list of dimension names for the given variable.

getVarFillValue

Retrieves the missing value of a variable, otherwise, it returns the default _FillValue.
isatt
Returns logical values indicating whether the given attributes are attached to the given variable.
iscoord
Returns True for every input string that is a coordinate variables of the given variable
isdim
Returns True if variable dimensions are defined in the given variable.
isdimnamed
Returns True if variable dimensions have names in given variable.
ismissing
Returns True for every element of the input that contains a missing value.

Returns True if the given dimension name is defined as unlimited on the given file.
nameDim
Assigns given named dimensions, long_name, and units to the input variable

set_default_fillvalue

Sets the default missing value for the given variable type.

Meteorology
angmom_atm
Calculates the atmosphere's relative angula momentum.

Calculates the dew point temperature given temperature and relative humidity.

fluxEddy

Calculates time averaged eddy flux quantities.
hydro
Computes geopotential height using the hydrostatic equation.
hyi2hyo
Interpolates from data on one set of hybrid levels to another set of hybrid levels.
hyi2hyo_Wrap
Interpolates from data on one set of hybrid levels to another set of hybrid levels and preserves metadata.
kf filter
Extract equatorial waves by filtering in the WheelerKiladis wavenumber-frequency domain.
Iclvl
Calculates the pressure of the lifting condensation level.
mixhum_ptd
Calculates the mixing ratio or specific humidity given pressure and dew point temperature.
mixhum_ptrh
Calculates the mixing ratio or specific humidity given pressure, temperature and relative humidity.
omega_to_w
Convert omega vertical velocity (Pa / s) to $(\mathrm{m} / \mathrm{s})$
prcwater_dp
Computes column precipitable water of the rightmost dimension.

Interpolates data on constant pressure levels to hybrid levels.

pres2hybrid_Wrap

Interpolates data on constant pressure levels to hybrid levels and retains metadata.
pres_sigma
Calculates the pressure at specified sigma levels.
Computes sea level pressure from CCM/CAM hybrid model variables using the ECMWF formulation.
pslhor
Computes sea level pressure from CCM/CAM hybrid model variables using the ECMWF formulation and Trenberth's horizontal correction.
pslhyp
Computes sea level pressure using the hypsometric equation.
rdsstoi
Reads weekly/monthly compocp site and climatology grids
relhum
Calculates relative humidity given temperature
mixing ratio, and pressure
relhum_ttd
Calculates relative humidity given temperature and dew point temperature.
stdatmus p2tdz
Calculates the corresponding temperature, density,
and height based on the 1976 U.S. standard atmosphere, given the pressure.

stdatmus_z2tdp

Calculates the corresponding temperature, density, and pressure based on the 1976 U.S. standard atmosphere, given the height.
uv2dv_cfd
Computes divergence using centered finite differences.
uv2vr_cfd
Computes relative vorticity using centered finite differences.

vibeta

Performs vertical integration using beta factors
w_to_omega
Convert vertical velocity with units (m / s) to Pa / s. wind_component

Calculate zonal and meridional wind components from wind speed and wind direction.
wind_direction
Calculate meteorological wind direction from zonal and meridional wind components.
z2geouv
Computes the geostrophic zonal and meridional wind components using geopotential height on isobaric levels (rectilinear grid only).
zonal_mpsi
Computes a zonal mean meridional stream function.
zonal mpsi Wrap
Computes a zonal mean meridional stream function and retains metadata.

Climatology
calcDayAnomTLL
Calculates daily anomalies from a daily data
climatology.

calcMonAnomLLLT

Calculates monthly anomalies by subtracting the long term mean from each point (lev,lat,lon,time version)

calcMonAnomLLT

Calculates monthly anomalies by subtracting the long term mean from each point (lat,lon,time version)

calcMonAnomTLL

Calculates monthly anomalies by subtracting the long term mean from each point (time,lat,lon version)

Calculates monthly anomalies by subtracting the long term mean from each point: (time,lev,lat,lon) version.
cImDayTLL
Calculates long term daily means (daily climatology) from daily data.
cImDayTLLL
Calculates long term daily means (daily climatology) from daily data.
clmMon2clmDay
Create a daily climatology from a monthly
climatology.

clmMonLLLT

Calculates long term monthly means (monthly climatology) from monthly data: (lev,lat,lon,time) version.
clmMonLLT
Calculates long term monthly means (monthly climatology) from monthly data (lat,lon,time version) cImMonTLL

Calculates long term monthly means (monthly
climatology) from monthly data: (time,lat,lon) version clmMonTLLL

Calculates long term monthly means (monthly
climatology) from monthly data: (time,lev,lat,lon) version

month to season

Computes a user-specified three-month seasonal
mean (DJF, JFM, FMA, MAM, AMJ, MJJ, JJA, JAS, ASO, SON, OND, NDJ).
month_to_season12
Computes three-month seasonal means (DJF, JFM, FMA, MAM, AMJ, MJJ, JJA, JAS, ASO, SON, OND, NDJ).
month_to_seasonN
Computes a user-specified list of three-month
seasonal means (DJF, JFM, FMA, MAM, AMJ, MJJ, JJA, JAS, ASO, SON, OND, NDJ).
rmAnnCycle1D
Removes annual cycle from a one-dimensional time series.
rmMonAnnCycLLLT
Removes the annual cycle from "monthly" data.
Removes the annual cycle from "monthly" data
rmMonAnnCycTLL
Removes the annual cycle from "monthly" data.
smthCImDayTLL
Calculates a smooth mean daily annual cycle for an array nominally dimensioned (Time,Lat,Lon).
smthCImDayTLLL
Calculates a smooth mean daily annual cycle for an array nominally dimensioned (Time,Level,Lat,Lon).
stdMonLLLT
Calculates standard deviations of monthly means.
stdMonLLT
Calculates standard deviations of monthly means.
stdMonTLL
Calculates standard deviations of monthly means.
stdMonTLLL
Calculates standard deviations of monthly means.
Oceanography
depth_to_pres
Convert ocean depth to pressure.
mixed_layer_depth
Calculates a quantity derived from the Potential Density of significance. (Documentation under construction.)
pop_remap
Regrids a POP ocean model grid to another grid

PopLatLon

Regrids a scalar variable on a POP grid to a lat/lon grid or vice-versa.
PopLatLonV
Converts vectors on a POP grid to a lat/lon grid and vice-versa.
potmp_insitu ocn
Calculate seawater potential temperature at an arbitrary reference pressure given insitu temperature, salinity and depth.
rho_mwjf
Computes ocean water density given a specified range for potential temperature (deg Celisus) and salinity (psu).

CESM

angmom_atm
Calculates the atmosphere's relative angula momentum.

band pass area time

Create a time series of area averages; band pass filter the resulting area averaged time series and calculate other statistics.
band_pass_area_time_plot
Generate a plot using the output from
band_pass_area_time.

band pass hovmuelle

Create a band-pass filtered time series suitable for a
time vs longitude (Hovmueller) plot

band_pass_hovmueller_plot

Generate a plot using the output from band_pass_hovmueller
band_pass_lation_time
Create band-pass filtered series at each lat/lon grid point.
band pass latlon time plot
Generate a plot using the output from
band_pass_latlon_time.
cz2ccm
Computes geopotential height in hybrid coordinates.

decomposeSymAsym

Decompose a variable which is symmetric about the equator into symmetric and asymmetric parts.
depth to pres
Convert ocean depth to pressure.
Calculates the pressure differences of a hybrid coordinate system
dpres_plevel
Calculates the pressure layer thicknesses of a constant pressure level coordinate system.
Calculates the pressure layer thicknesses of a constant pressure level coordinate system.
dz_height
Calculates the height layer thicknesses at each grid point over varying surface terrain.
kf_filter
Extract equatorial waves by filtering in the WheelerKiladis wavenumber-frequency domain

mixed layer depth

Calculates a quantity derived from the Potential Density of significance. (Documentation under construction.)
mjo_cross
Calculate space-time cross spectrum over multiple segments.
mjo cross coh2pha
Calculate space-time coherence-squared and phase using the array returned by mjo_cross_segment
mjo_cross_plot
Plot coherence-squared and phase spectra as returned by mjo_cross.
mjo_cross_segment
Calculate space-time cross spectrum for a single time segment.
mjo_phase_background
Plot background for MJO phase-space diagram.
mjo_space_time_cross
Calculate space-time cross spectrum over multiple segments.

mjo spectra

Driver to calculate and plot seasonal spectra via segment averaging as defined by the US-CLIVAR MJO diagnostics website
mjo_spectra_season
Calculates seasonal spectra via segment averaging as defined by the US-CLIVAR MJO diagnostics website.

mjo wavenum freq season

Calculates wavenumber-frequency spectar via seasonal averaging as defined by the US-CLIVAR MJO diagnostics website
mjo_wavenum_freq_season_plot
Plot wavenumber-frequency spectra as returned by mjo wavenum freq season.
mjo_xcor_lag_ovly
$\overline{\text { Plot lagged cross-correlations as returned by }}$ mjo_xcor_lag_season.
mjo_xcor_lag_ovly_panel
Plot lagged cross-correlations as returned by mjo_xcor_lag_season as panels.
mjo_xcor_lag season
Calculates lagged correlations between a reference series and gridded data as specified by the USCLIVAR MJO diagnostics website
moc_globe_atl
Facilitates calculating the meridional overturning circulation for the globe and Atlantic.
omega_ccm
Calculates omega [vertical pressure velocity] using the model diagnostic method.

omega_ccm_driver

Computes vertical pressure velocity [omega] via model diagnostic code.

pop remap

Regrids a POP ocean model grid to another grid
PopLatLon
Regrids a scalar variable on a POP grid to a lat/lon grid or vice-versa.

PopLatLonV
Converts vectors on a POP grid to a lat/lon grid and vice-versa.
potmp_insitu_ocn
Calculate seawater potential temperature at an arbitrary reference pressure given insitu temperature, salinity and depth.
pres hybrid ccm
Calculates pressure at the hybrid levels.

resolveWavesHayashi

Reorder the complex coefficients returned by cfftf to resolve the progressive and retrogressive waves
vinth2p
Interpolates CAM (Community Atmosphere Model) hybrid coordinates to pressure coordinates.
vinth2p_ecmwf
Interpolates CESM hybrid coordinates to pressure coordinates but uses an ECMWF formulation to extrapolate values below ground.
vinth2p_ecmwf_nodes
Interpolates CESM hybrid coordinates to pressure coordinates but uses an ECMWF formulation to extrapolate values below ground.
vinth2p_nodes
Interpolates CESM hybrid coordinates to pressure coordinates on an unstructured grid.
vintp2p_ecmwf
Interpolates data at multidimensional pressure levels to constant pressure coordinates and uses an
ECMWF formulation to extrapolate values below ground.
wgt_vert_avg_beta
Computes weighted vertical average or sum using pressure thickness and beta factors.
wgt_volave_ccm
Calculates the volume average of a quantity from the CCM using weights.
wgt_volrmse_ccm
Calculates a weighted volume root-mean-square-
difference between two variables from the CCM
wkSpaceTime
Calculates Wheeler-Kiladis space-time spectra.
wkSpaceTime cam
Calculates Wheeler-Kiladis space-time spectra using a generic CAM interface.

ESMF

curvilinear_to_SCRIP
Writes the description of a curvilinear grid to a
SCRIP file.
ESMF_regrid
Regrids data from one lat/lon grid to another, using ESMF software.
ESMF_regrid_gen_weights
Writes a weight file using the offline ESMF weight generator.
ESMF_regrid_with weights
Using the provided weight file, regrids data from one lat/lon grid to another.

atlon to SCRIP

Writes the description of a lat/lon grid to a SCRIP file.

rectilinear_to_SCRIP

Writes the description of a rectilinear grid to a SCRIP file.

unstructured_to_ESMF
 Writes the description of an unstructured grid to an

 ESMF file.
WRF

wrf_avo
Calculates absolute vorticity from WRF model output.
wrf_cape_2d
Computes maximum convective available potentia
energy (CAPE), maximum convective inhibition
(CIN), lifted condensation level (LCL), and level of free convection (LFC).

wrf_cape_3d

Computes convective available potential energy (CAPE) and convective inhibition (CIN)
wrf_contour
Creates a contour plot from ARW WRF model output.
wrf dbz
Calculates simulated equivalent radar reflectivity factor [dBZ] from WRF model output.
wrf eth
Calculates equivalent potential temperature from WRF model output
wrf_helicity
Calculates storm relative helicity from WRF model output.
wrf_ij_to_II
Finds the nearest longitude, latitude locations to the specified model grid indices (i, j).
wrf_interp_1d
Linearly interpolates a one-dimensional variable in the vertical.
wrf_interp_2d_xy
Extracts a cross section from a given input field.
wrf_interp_3d_z
Interpolates to a specified pressure/height level.
wrf_II_to_ij
Finds the nearest model grid indices (i,j) to the specified location(s) in longitude and latitude.
wrf_map
Creates a map background for ARW WRF mode data.
wrf_map_overlays
Overlays different contour and vector plots over a WRF-ARW map background.
wrf_map_resources
Sets map plotting resources based on an input WRF-ARW file.
wrf_omega
Calculates approximate omega in C, given vertical velocity, water vapor mixing ratio, temperature, and pressure from WRF model output.

wrf_overlays

Overlays multiple plots, created from other ARW WRF plot functions.
wrf_pvo
Calculates potential vorticity from WRF model output.
wrf_rh
Calculates relative humidity from ARW WRF model output.
wrf_slp
Calculates sea level pressure from ARW WRF model output.
wrf_smooth_2d
Smooths a given field.
wrf td
Calculates dewpoint temperature in [C] from ARW WRF model output.
wrf_times_c
Converts WRF variable "Times" which is of type character to user specified numeric units.
wrf_tk
Calculates temperature in $[\mathrm{K}]$ from ARW WRF model output.
wrf_updraft_helicity
Calculates updraft helicity from WRF model output
wrf_user_getvar
Extracts data from ARW WRF model output, and does basic diagnostics calculations.
wrf user ij to II
Finds the nearest longitude, latitude locations to the specified model grid indices (i,j).
wrf_user_intrp2d
Interpolates ARW WRF 2D model data along a give line.
wrf_user_intrp3d
Interpolates ARW WRF model data vertically or horizontally.

wrf_user_list_times

Extracts the list of available times in the ARW WRF model output.
wrf_user_II_to_ij
Finds the nearest model grid indices (i,j) to the specified location(s) in longitude and latitude.
wrf_user_unstagger
Unstaggers an input variable along a specified dimension.

Rotates u,v components of the wind to earth coordinates.
wrf_vector
Creates a vector plot from ARW WRF model output. wrf_virtual_temp

Calculates virtual temperature, given temperature and mixing ratio from WRF model output.
wrf_wetbulb
Calculates wet bulb temperature in C , given pressure in temperature in K and mixing ratio in $\mathrm{kg} / \mathrm{kg}$ from WRF model output.

Unclassified routines

dim_spei_n

Calculate the standardized precipitation
evapotransporation index (SPEI).
dim_spi_n
Calculate the standardized precipitation index (SPI)

dim thornthwaite n

Estimate the potential evapotranspiration (PET) via the Thornthwaite method.
dim_ttwpet_n
Estimate the potential evapotranspiration (PET) via the Thornthwaite method.
rtest
Determines the statistical significance of a linear correlation coefficient

