Performance Tools Hands-On

PAT - Oct/2016

Extrae features

- (Parallel programming models
 - MPI, OpenMP, pthreads, OmpSs, CUDA, OpenCL, Java, Python...
- (Platforms
 - Intel, Cray, BlueGene, MIC, ARM, Android, Fujitsu Sparc...
- (Performance Counters
 - Using PAPI interface

(Link to source code

- Callstack at MPI routines
- OpenMP outlined routines
- Selected user functions (Dyninst)
- (Periodic sampling
- (User events (Extrae API)

No need to recompile / relink!

	Average values	Mistral
Event	150 – 200 ns	167 ns
Event + PAPI	750 ns – 1 us	4.7 us
Event + callstack (1 level)	600 ns	626 ns
Event + callstack (6 levels)	1.9 us	2 us

How does Extrae work?

(Symbol substitution through LD_PRELOAD

- Specific libraries for each combination of runtimes
 - MPI
 - OpenMP
 - OpenMP+MPI
 - ...

(Dynamic instrumentation

- Based on Dyninst (developed by U.Wisconsin/U.Maryland)
 - Instrumentation in memory
 - Binary rewriting

(Alternatives

- Static link (i.e., PMPI, Extrae API)

Using Extrae in 3 steps

- 1. Adapt the job submission script
- 2. (Optional) Tune the Extrae XML configuration file
 - Examples distributed with Extrae at \$EXTRAE_HOME/share/example
- 3. Run it!

(For further reference check the **Extrae User Guide**:

- Also distributed with Extrae at \$EXTRAE_HOME/share/doc
- <u>http://www.bsc.es/computer-sciences/performance-tools/documentation</u>

(The following directory in your home folder contains all the examples:

Installing ICON

- > cd \$HOME
- > tar xfzv icon-dev.tgz
- > cd icon-dev
- > module add intel/15.0.6
- > module add mxm/3.3.3002
- > module add fca/2.5.2393
- > module add bullxmpi_mlx/bullxmpi_mlx-1.2.8.3
- > ./configure --with-fortran=intel
- > ./build_command
- > ./make_runscripts atm_amip

Step 1: Adapt the job script to load Extrae (LD_PRELOAD)

@ mistral.dkrz.de

- > cd \$HOME/icon-dev/run
- > cp exp.atm_amip.run exp.atm_amip.run.extrae
- > vi exp.atm_amip.run.extrae

exp.atm_amip.run.extrae

Step 1: Adapt the job script to load Extrae (LD_PRELOAD)

(Copy Extrae files to experiment directory

@ mistral.dkrz.de

> cp \$HOME/tools-material/extrae/* \$HOME/icon-dev/run

exp.atm_amip.run.extrae

#SBATCH --acount=kg0166 #SBATCH --job-name=exp.atm_amip.run #SBATCH --workdir=/home/dkrz/k203109/icon-dev/run #SBATCH --nodes=4 #SBATCH --threads-per-core=2 #SBATCH --output=LOG.exp.atm_amip.run.%j.o #SBATCH --error=LOG.exp.atm_amip.run.%j.e #SBATCH --exclusive #SBATCH --exclusive #SBATCH --time=00:30:00

TRACE=\${basedir}/run/trace.sh EXTRAE_CONFIG=\${basedir}/run/extrae.xml cp \${TRACE} . cp \${EXTRAE_CONFIG} . \${START} \${TRACE} \${MODEL}

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Step 1: Adapt the job script to load Extrae (LD_PRELOAD)

@ mistral.dkrz.de

> vi \$HOME/icon-dev/run/trace.sh

10

(Choose depending on the application type

Library	Serial	MPI	OpenMP	pthread	CUDA
libseqtrace	\checkmark				
libmpitrace[f] ¹		\checkmark			
libomptrace			\checkmark		
libpttrace				\checkmark	
libcudatrace					\checkmark
libompitrace[f] ¹		\checkmark	\checkmark		
libptmpitrace[f] ¹		\checkmark		\checkmark	
libcudampitrace[f] ¹		\checkmark			\checkmark

¹ include suffix "f" in Fortran codes

(Submit your job

@ mistral.dkrz.de

> cd \$HOME/icon-dev/run

> sbatch exp.atm_amip.run.extrae

(Easy! 🙂

Step 2: Extrae XML configuration

@ mistral.dkrz.de

> vi \$HOME/icon-dev/run/extrae.xml

Step 2: Extrae XML configuration (II)

@ mistral.dkrz.de

> vi \$HOME/icon-dev/run/extrae.xml

```
<counters enabled="ves">
 <cpu enabled="yes" starting-set-distribution="cyclic">
   <set enabled="yes" domain="all" changeat-time="500000us">
     PAPI TOT INS, PAPI TOT CYC, PAPI L1 DCM, PAPI L3 TCM,
     PAPI BR INS, PAPI BR MSP
   </set>
   <set enabled="yes" domain="all" changeat-time="500000us">
     PAPI TOT INS, PAPI TOT CYC, PAPI SR INS, PAPI LD INS,
                                                                           Select which HW
     RESOURCES STALLS:RS, RESOURCE STALLS:SB
   </set>
                                                                             counters are
   <set enabled="yes" domain="all" changeat-time="500000us">
                                                                               measured
   <set enabled="yes" domain="all" changeat-time="500000us">
     . . .
   </set>
   <set enabled="yes" domain="all" changeat-time="500000us">
     . . .
   </set>
 </cpu>
 <network enabled="no" />
 <resource-usage enabled="no" />
 <memory-usage enabled="no" />
</counters>
```


Step 2: Extrae XML configuration (III)

@ mistral.dkrz.de

\$TRACE_NAME\$

</merge>

All done! Check your resulting trace

(Once finished (check with "squeue") you will have the trace (3 files):

@ mistral.dkrz.de

(Compress the trace (takes a little while)

@ mistral.dkrz.de

> gzip icon.prv

(Any trouble? Traces already generated here:

@ mistral.dkrz.de

> ls \$HOME/tools-material/traces

Installing Paraver

(Download the Paraver binaries to your laptop

@ your laptop

(Uncompress the package into your home directory

@ your laptop

> tar xvfz wxparaver-4.6.2-linux-x86_64.tar.gz -C \$HOME

> ln -s \$HOME/wxparaver-4.6.2-linux-x86 64 \$HOME/paraver

(Download Paraver tutorials and uncompress into the Paraver directory

@ your laptop

> scp <USER>@mistral.dkrz.de: tools-packages/paraver-tutorials-20150526.tar.gz \$HOME

> tar xvfz \$HOME/paraver-tutorials-20150526.tar.gz -C \$HOME/paraver

Check that everything works

(Start Paraver

@ your laptop

> \$HOME/paraver/bin/wxparaver

(Check that tutorials are available

(Trouble installing locally? Remote open from Mistral

@ mistral.dkrz.de

- > ssh -Y <USER>@mistral.dkrz.de
- > cd /sw/rhel6-x64/analysis-tools/wxparaver-4.6.1/bin
- > ./wxparaver

First steps of analysis

(Copy the trace to your laptop

@ your laptop

> scp <USER>@mistral.dkrz.de:icon-dev/experiments/atm amip/icon.* \$HOME

(Load the trace with Paraver

(Trace is big: Filter it

Filter the trace

(What to filter?

- Keep only long computations and flushing events
- Copy this configuration from Mistral

> scp <USER>@mistral.dkrz.de:tools-material/paraver/filter.xml \$HOME

inpuc	icon.prv.gz	Browse	
Output		Browse	1. Click on "Browse"
	Load the processed trace		2 Select "filter yml"
	Run application with the processed trace		2. Select Interation
Cut/Filter Pa	rameters		
Configuratio	n file	Browse	
Cutter Fill	S S S S S S S S S S S S S S S S S S S		
0 0 1	time begin		
O Cut by			
 Cut by Cut by Tasks 	time % End		
 Cut by Cut by Tasks 	ltime % End		
Cut by Cut by Tasks Selet	rtime % End	All Trace	
Cut by Cut by Tasks Sele Trace Option	rtime % End	All Trace	3. Click on "Apply"
© Cut by Cut by Tasks Sele Trace Optic	rtime % End ect Region All Window ons ginal time Remove first :	All Trace	3. Click on "Apply"

Find a representative region

(Load views:

- Useful duration
 - File → Load Configuration → "cfgs/General/views/useful_duration.cfg"

1 full iteration

- Flushing
 - Hints \rightarrow Flush \rightarrow Flushing trace buffer

Cut the trace (I)

(Zoom the time interval to cut in the timeline \rightarrow 1 iteration

Cut the trace (II)

(Get a subtrace that contains all events only for this iteration

- Right click → Run → Cutter

Succes	r			1. Click on "Browse" and select the original
Input	icon.filter1.prv		Browse	(big) trace: icon.prv.gz
Output	icon.filter1.chop1.prv		Browse	
	Load the processed to Run application with	race the processed trace		
Cut/Filter Parame	ters			
Configuration file	2		Browse	
Cutter Filter	 ✓ 1 Cutter ⊇ Filter ⊇ Software Cou 	nters	Save	
Cut by time	Begin	18128087270		
○ Cut by time	e% End	19459267288		
Tasks				
Select Re	egion All	Window	All Trace	2. Click on
Trace Options				"Apply"
🗌 Use original	time	Remove first state		
🛛 🗹 Don't break	states	👿 Remove last state		
		C	Cancel Apply	

First steps of analysis

(Select the generated cut

(Follow Tutorial #3

Measure the parallel efficiency

(Click on "mpi_stats.cfg"

Centro Nacional de Supercomputación

- Check the Average for the column labeled "Outside MPI"

Tutorials									
To measure the p <u>cfgs/mpi/mpi sta</u> %time of every thr statistics at the bo represents the app represents the glot communication effi	arallel efficiency load the configuration <u>tts.cfg</u> This configuration pops up a table ead spends in every MPI call. Look at the toom of the outside mpi column. Entry Avy lication parallel efficiency, entry Avg/Max bal load balance and entry Maximum repri- iciency. If any of those values are lower th	file e with global erage esents the a 💌 🗊 MPI call p	rofile @ icon.c	hop1.prv					
recommended to lo control window to i	ook at the corresponding metric in detail.		🔍 📕 📕	H 📕 ½	Σ				
		THREAD 1.134.1	79.79 %	7.28 %	3.29 %	4.13%	5.03 %	0.08 %	0.24
 To measure the contract 	omputation time distribution load the	THREAD 1.135.1	79.87 %	5.07 %	3.22 %	4.81 %	5.01 %	1.58 %	0.2
configuration file <u>c</u>	fgs/general/2dh usefulduration.cfg	THREAD 1.136.1	80.95 %	5.11 %	3.46 %	4.87 %	5.20 %	0.09 %	0.1
regions. The comp	utation regions are delimited by the exit f	THREAD 1.137.1	80.89 %	5.37 %	3.51 %	4.45 %	5.02 %	0.43 %	0.1
call and the entry t	to the next call. If the histogram does not	STHREAD 1.138.1	82.13 %	4.82 %	3.63 %	3.95 %	5.07 %	0.07 %	0.1
vertical lines, it ind	icates the computation time may be not l	THREAD 1.139.1	81.31 %	7.57 %	2.89 %	2.39 %	5.40 %	0.11 %	0.1
correlate both view	VS.	THREAD 1.140.1	80.24 %	5.51 %	3.26 %	5.60 %	4.98 %	0.08 %	0.1
		THREAD 1.141.1	78.91 %	5.99 %	3.04 %	5.23 %	5.23 %	1.20 %	0.2
• To measure the c	omputational load (instructions) dist	THREAD 1.142.1	81.43 %	6.46 %	3.76 %	2.67 %	5.27 %	0.07 %	0.1
		THREAD 1.143.1	81.66 %	4.94 %	3.20 %	4.36 %	5.07 %	0.41 %	0.1
	Parallel efficiency	THREAD 1.144.1	82.69 %	4.67 %	3.26 %	3.89 %	5.10 %	0.08 %	0.1
	i dialici cilicicity								
		Tout	11,550.23 %	890.42 %	489.74 %	634.53 %	726.98 %	51.66 %	33.1
		Averag	80.21 %	6.18 %	3.40 %	4.41 %	5.05 %	0.36 %	0.2
		Maximum	84.43 %	10.10 %	4.15 %	8.75 %	5.40 %	2.87 %	0.4
		M:UM	77.62 %	4.18 %	2.18%	1.01 %	0.46 %	0.07 %	0.0
	Comm efficiency	StDev	1.28 %	1.08 %	0.39 %	1.49 %	0.40 %	0.49 %	0.0
	contractionery	Avg/Ma	0.95	0.61	0.82	0.50	0.93	0.12	(
_	Load balance								
Barcelona Supercomputing									

Measure the computation time distribution

(Run the clustering tool on the trace you have generated

- To avoid copying the cut trace back to Mistral, use a prepared cut

@ mistral.dkrz.de

> cd \$HOME/tools-material/clustering

> ./clusterize.sh ../traces/icon.chop1.prv.gz

Cluster-based analysis (II)

(Check the clustering scatter plot

@ mistral.dkrz.de

> gnuplot icon.chop1.clustered.IPC.PAPI_TOT_INS.gnuplot

- Press "L" (once) to switch to logarithmic scale
- (Identify main computing trends
- (Work (Y) vs. Performance (X)
- (See the horizontal clusters?
 - Large IPC variability
 - Indicate potential imbalances

Cluster-based analysis (III)

(Check the clustered trace

- Copy the clustered trace to your laptop

@ your laptop

> scp <USER>@mistral.dkrz.de:toolsmaterial/clustering/icon.chop1.clustered.* \$HOME

Load with Paraver

@ your laptop

> \$HOME/paraver/bin/wxparaver \$HOME/icon.chop1.clustered.prv.gz

- Display the distribution of clusters over time

- File → Load configuration
- Select: \$HOME/paraver/cfgs/clustering/clusterID_window.cfg

Cluster-based analysis (IV)

(Correlate scatter plots & timelines to detect imbalances

Thank you!

⊠ tools@bsc.es