
© 2017 Arm Limited

Efficient HPC Development
with Allinea Forge

DKRZ, Hamburg

10/10/2017

Florent Lebeau

Florent.Lebeau@arm.com

© 2017 Arm Limited 2

Agenda

• Debugging and profiling MPI applications at DKRZ

• Analysing memory issues

• Detecting deadlocks

• MPMD applications

• Best practices

© 2017 Arm Limited 3

About Allinea Tools

• Allinea Tools: leading toolkit for HPC application developers
• Available on 65% of the top 100 HPC systems

• Help maximise application efficiency with Performance Reports

• Help the HPC community design the best applications with Forge
• Available at DKRZ: 1024 tokens

• As of December 2016 Allinea is now part of ARM
• Allinea objective: continue to be the trusted HPC Tools leader in tools across every platform

• This means:
• The same team will continue to work with you, our customers and partners, and the wider HPC community
• Being part of ARM gives us strength to deliver on our roadmap faster
• We remain 100% committed to providing cross-platform tools for HPC
• Our engineering roadmap is aligned with upcoming architectures from every vendor

© 2017 Arm Limited 4

ARM HPC Tools

Research Compilers ARM Performance Libraries
Userspace Performance

Tools
Open Source

HPC
Allinea Tools

New compiler technology
to support and evaluate
next-generation ARM

architecture.

Commercially-supported
BLAS, LAPACK and FFT
routines optimized for

ARM-compatible
microarchitectures.

New commercial tools
to deliver actionable

performance
improvement advice

to software
developers.

Identification of issues
in ARM builds of open-
source packages and
the upstreaming of

fixes.

Parallel debugger,
profiler and

performance analysis
tools for HPC

The mission:
Enable the software ecosystem for large-scale ARM systems.
Based in Manchester and Warwick, UK.

www.developer.arm.com/hpc

http://www.developer.arm.com/hpc

© 2017 Arm Limited 5

Debugging and Profiling MPI
Applications

© 2017 Arm Limited 6

Print statement debugging

The first debugger: print statements

• Each process prints a message or value at
defined locations

• Diagnose the problem from evidence and intuition

A long slow process

• Analogous to bisection root finding

Broken at modest scale

• Too much output – too many log files

x

f(x)

© 2017 Arm Limited 7

Typical types of bugs

• Steady and
dependable,
I’ll be there
for you.

BOHR
BUG

• Oh, you are
debugging?
Let me hide
for a sec!

HEISEN
BUG

• Chaos is my
name and
you shall fear
me.

MANDEL
BUG

• I am buggy
AND not
buggy. How
about that?

SCHRODIN
BUG

© 2017 Arm Limited 8

Debugging by discipline

Debugging a problem is much easier when you can :

• Make and undo changes fearlessly

• Use a source control (CVS, …)

• Track what you’ve tried so far

• Write logbooks

• Reproduce bugs with a single command

• Create and use test script

© 2017 Arm Limited 9

Allinea DDT helps to understand

Who had a rogue behaviour ?

• Merges stacks from processes and threads

Where did it happen?

• Allinea DDT leaps to source automatically

How did it happen?

• Detailed error message given to the user

• Some faults evident instantly from source

Why did it happen?

• Unique “Smart Highlighting”

• Sparklines comparing data across processes

Run

with Allinea tools

Identify
a problem

Gather info
Who, Where,

How, Why

Fix

© 2017 Arm Limited 10

Allinea DDT cheat sheet

Prepare the code

• $ mpicc -O0 -g myapp.c –o myapp.exe

Load the environment module

• $ module load allinea-forge

Start Allinea DDT in interactive mode (in an interactive job session)

• $ ddt srun ./myapp.exe arg1 arg2

Or use the reverse connect mechanism (by submitting a batch job)

• On the login node:

• $ ddt &

• (or use the remote client http://www.allinea.com/products/downloads/)

• Then, edit the job script to run the following command and submit:

• ddt --connect mpirun -n 8 ./myapp.exe arg1 arg2

http://www.allinea.com/products/downloads/

© 2017 Arm Limited 11

Example 1

Copy the archive in your working directory

• $ cp
/scratch/k/k203064/flebeau/allinea_workshop.tar.gz .

• $ tar xzvf allinea_workshop.tar.gz

• $ cd allinea_workshop

Load the environment

• $. env

And go to the first exercise

• $ cd 1_interactive_debugging/

Compile with:

• $ make

And submit the job

• $ sbatch job.sub

The initial application crashes

Recompile for debugging with:

• $ make DEBUG=1

Launch Allinea DDT on the login node, edit
the job script to prefix the execution
command with “ddt --connect” and debug
the application

© 2017 Arm Limited 12

How to profile?

Different methods

• Tracing

– Records and timestamps all operations

– Intrusive

• Instrumenting

– Add instructions in the source code to collect data

– Intrusive

• Sampling

– Automatically collect data

– Not intrusive

© 2017 Arm Limited 13

Some types of profiles

Hotspot

• One function corresponds to more 80% of the runtime

• Large speed-up potential

• Best optimisation scenario

Spike

• The application spends most of the time in a few functions

• Speed-up potential depends on the aggregated time

• Variable optimisation time

Flat

• Runtime split evenly between numerous functions, each one with a very small runtime

• Little speed-up potential without algorithmic changes

• Worst optimisation scenario

© 2017 Arm Limited 14

Allinea MAP: Performance made easy

Low overhead measurement

• Accurate, non-intrusive application performance profiling

• Seamless – no recompilation or relinking required

Easy to use

• Source code viewer pinpoints bottleneck locations

• Zoom in to explore iterations, functions and loops

Deep

• Measures CPU, communication, I/O and memory to identify problem causes

• Identifies vectorization and cache performance

© 2017 Arm Limited 15

Allinea MAP cheat sheet

Prepare the code

• $ mpicc –O3 -g myapp.c –o myapp.exe

Load the environment module

• $ module load allinea-forge

Edit the job script to run Allinea MAP in “profile” mode

• $ map --profile srun ./myapp.exe arg1 arg2

Open the results

• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map

• (or load the corresponding file using the remote client http://www.allinea.com/products/downloads/)

http://www.allinea.com/products/downloads/

© 2017 Arm Limited 16

Example 2

Go to

• $ cd 2_profiling/

Compile with:

• $ make

Edit the job script to prefix the execution command with “map --profile” and submit the
job

• $ sbatch job.sub

Analyse the profiling results

• $ map *.map

© 2017 Arm Limited 17

Analysing Memory Issues

© 2017 Arm Limited 18

It works… Well, most of the time

A strange behaviour where the
application “sometimes” crashes is a
typical sign of a memory bug

Allinea DDT is able to force the crash
to happen

•I am buggy
AND not
buggy. How
about that?

SCHRODIN
BUG !

© 2017 Arm Limited 19

Memory debugging menu in Allinea DDT

© 2017 Arm Limited 21

Heap debugging options available

basic
•Detect invalid pointers

passed to memory
functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence
•Check the end of an

allocation has not been
overwritten when it is
freed.

free-protect
•Protect freed memory

(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodiness
•Memory usage,

statistics, etc.

Fast free-blank
•Overwrite the bytes of

freed memory with a
known value.

alloc-blank
•Initialise the bytes of

new allocations with a
known value.

check-heap
•Check for heap

corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy
•Always copy data to a

new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

Balanced check-blank
•Check to see if space

that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs
•Check the arguments of

addition functions
(mostly string
operations) for invalid
pointers.

Thorough

See user-guide:

Chapter 12.3.2

© 2017 Arm Limited 22

Guard pages (aka “Electric Fences”)

A powerful feature…:
• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

… to be used carefully:
• Kernel limitation: up to 32k guard pages max (“mprotect fails” error)
• Beware the additional memory usage cost

4 kBytes
(typically)

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

© 2017 Arm Limited 23

Example 3

Go to

• $ cd 3_mem_dbg/

Compile with:

• $ make

• /!\ Don’t forget to compile with “-O0 -g”

Edit the job script to prefix the execution command with “ddt --connect”, launch ddt on
the login node and submit the job

• $ ddt &

• $ sbatch job.sub

In the “Run” window, select “Fast” memory debugging first

Submit the job again and enable “Guard pages”

© 2017 Arm Limited 24

Detecting Deadlocks

© 2017 Arm Limited 25

My application has been running for a while now…

A strange behaviour where the
application runs for “longer than
expected” is a typical sign of a
deadlock.

The application is hanging in the
queue: alive and dead…

Allinea DDT is able to attach to the
running processes and observe
what is happening.

•I am buggy
AND not
buggy. How
about that?

SCHRODIN
BUG !

© 2017 Arm Limited 26

Example 4

Go to

• $ cd 4_deadlock/

Compile with:

• $ make

• Start Allinea DDT

Run the job with 10 processes: it works.

• $ srun --account=kg0166 --partition=compute -N 1 -n 10 ./cpi.exe

Run it again with 8 processes: it hangs!

• $ srun --account=kg0166 --partition=compute -N 1 -n 8 ./cpi.exe

In Allinea DDT’s GUI, select “Attach” from the main menu.

Allinea DDT should be able to detect the application automatically. Select it and debug it!

© 2017 Arm Limited 27

MPMD Applications

© 2017 Arm Limited 28

Example 5: How to run Forge on MPMD applications

Same logic, just prefix the execution command with the command:

• $ cd 5_mpmd/

• $ ddt --connect mpirun -n 8 myapp1.exe : -n 16 myapp2.exe

• $ map --profile srun –multi-prog cmd.srun

• With cmd.srun:

0-7 ./myapp1.exe

8-23 ./myapp2.exe

Since 7.1, the ranks to profile can be specified:

• $ map --select-ranks=0-7 --profile srun cmd.srun

© 2017 Arm Limited 29

Allinea DDT in manual launch

For complex launch mechanisms, for example if SLURM actually launches wrapper scripts,
it is possible to launch the debugger in manual launch.

To do so:

• Launch the GUI on the login node and select “Manual Launch” from the Allinea DDT GUI

• Specify the number of processes and click on “Listen”

• The debugger now awaits for the processes to connect

• Click on “Help” on the window to know how to connect the processes

• By prefixing the processes to debug in the wrapper script with the following for example:

• ddt-client --ddtsessionfile /home/flebeau/.allinea/session/toutatis-1 PROGRAM

• Submit the job and see the processes attaching in the debugger

© 2017 Arm Limited 30

Increase Productivity with
Automation

© 2017 Arm Limited 31

ESiWACE Project partner
Centre of Excellence in Simulation of Weather and Climate in Europe

A main goal of ESiWACE is to substantially
improve efficiency and productivity of
numerical weather and climate simulation
on high-performance computing platforms
by supporting the end-to-end workflow of
global Earth system modelling in HPC
environment.

© 2017 Arm Limited 32

Automation script example
#!/bin/bash –l
Job submission file name
jobfile=test_jacobi_mpi_omp_gnu.sub
Load environment
module load compiler/gnu mpi/openmpi_gnu
module load allinea/perf-report
Compile
make clean && make

Job submission file configuration
cat << EOF > $jobfile
#!/bin/bash –l
#SBATCH --job-name=‘test_jacobi_mpi_omp_gnu‘
#SBATCH --time=00:05:00
#SBATCH --ntasks=128

#SBATCH –ntasks-per-node=2
export OMP_NUM_THREADS=16
srun ./jacobi_omp_mpi_gnu.exe
EOF

Submit
sbatch $jobfile

Check results
[…]

Compile

Execute

Test

© 2017 Arm Limited 33

Automate profiling

--output specifies the name of the output

• *.map file

--stop-after=X enables to stop sampling after X seconds after the program starts

--start-after=Y enables to start sampling after Y seconds after the program starts

--export=FILE exports a specified *.map file in JSON file

map --profile --output jacobi_omp_mpi_gnu_perf.map \

--stop-after=300

srun ./jacobi_omp_mpi_gnu.exe

map --export=jacobi_omp_gnu_perf.json jacobi_omp_gnu_perf.map

© 2017 Arm Limited 34

Automate debugging

--offline enable non-interactive debugging

-o specifies the name and output of the non-interactive debugging session

• Html

• Txt

ddt --offline -o jacobi_omp_mpi_gnu_debug.txt \

--trace-at _jacobi.F90:83,residual \

srun ./jacobi_omp_mpi_gnu.exe

© 2017 Arm Limited 35

Automate debugging

fail=0
--- check DDT tracepoint (residual)
f=jacobi_omp_mpi_gnu_debug.txt
resid=`grep ^tracepoint $f | awk -Fresidual: '{print $2}' |tail -1 |cut -c2-5`
if ["$resid" != "2.57"] ; then

((fail++))
echo "Test has failed resid=$resid“

else
echo “Test has succeeded”

Time Tracepoint Processes Values

1 21:18.172 jacobi_mpi_omp_gnu.exe
(_jacobi.f90:83)

0-127 residual: 2.57

© 2017 Arm Limited 36

Automate debugging

Other available options:

o --trace-changes: set a tracepoint on the variable introduced by the
latest commit (git, svn, mercurial)

o --break-at: set a breakpoint

o --mem-debug: check for memory defects and leaks

o --check-bounds: check for out of bounds array accesses

© 2017 Arm Limited 37

Development process workflow

FORGE

ANALYZE

(Allinea
Performance

Reports)

DEBUGGING

(Allinea DDT)

PERF
OPTIMIZATION

(Allinea MAP)

Demand for software
efficiency

Debug/optimize, edit,
commit, build, repeat

Demand for developer
efficiency

Version Control
(e.g. GIT, etc…)

Continuous Integration
(e.g. Jenkins, etc.)

Open Interfaces
(e.g. JSON APIs) DB

NEW
VERSION

3838

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!

© 2017 Arm Limited

