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Agenda

• Debugging and profiling MPI applications at DKRZ

• Analysing memory issues

• Detecting deadlocks

• MPMD applications

• Best practices
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About Allinea Tools

• Allinea Tools: leading toolkit for HPC application developers
• Available on 65% of the top 100 HPC systems

• Help maximise application efficiency with Performance Reports

• Help the HPC community design the best applications with Forge
• Available at DKRZ: 1024 tokens

• As of December 2016 Allinea is now part of ARM
• Allinea objective: continue to be the trusted HPC Tools leader in tools across every platform

• This means:
• The same team will continue to work with you, our customers and partners, and the wider HPC community
• Being part of ARM gives us strength to deliver on our roadmap faster
• We remain 100% committed to providing cross-platform tools for HPC
• Our engineering roadmap is aligned with upcoming architectures from every vendor
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ARM HPC Tools

Research Compilers ARM Performance Libraries
Userspace Performance

Tools
Open Source

HPC
Allinea Tools

New compiler technology
to support and evaluate 
next-generation ARM 

architecture.

Commercially-supported 
BLAS, LAPACK and FFT 
routines optimized for

ARM-compatible 
microarchitectures.

New commercial tools 
to deliver actionable 

performance 
improvement advice 

to software 
developers.

Identification of issues 
in ARM builds of open-
source packages and 
the upstreaming of 

fixes.

Parallel debugger, 
profiler and 

performance analysis 
tools for HPC

The mission:
Enable the software ecosystem for large-scale ARM systems.
Based in Manchester and Warwick, UK.

www.developer.arm.com/hpc

http://www.developer.arm.com/hpc
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Debugging and Profiling MPI 
Applications



© 2017 Arm Limited 6

Print statement debugging

The first debugger: print statements

• Each process prints a message or value at 
defined locations

• Diagnose the problem from evidence and intuition

A long slow process

• Analogous to bisection root finding

Broken at modest scale

• Too much output – too many log files

x

f(x)



© 2017 Arm Limited 7

Typical types of bugs

• Steady and 
dependable, 
I’ll be there 
for you.

BOHR
BUG

• Oh, you are 
debugging? 
Let me hide 
for a sec!

HEISEN 
BUG

• Chaos is my 
name and 
you shall fear 
me.

MANDEL 
BUG

• I am buggy 
AND not 
buggy. How 
about that?

SCHRODIN
BUG
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Debugging by discipline

Debugging a problem is much easier when you can :

• Make and undo changes fearlessly

• Use a source control (CVS, …)

• Track what you’ve tried so far

• Write logbooks

• Reproduce bugs with a single command

• Create and use test script
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Allinea DDT helps to understand

Who had a rogue behaviour ?

• Merges stacks from processes and threads

Where did it happen? 

• Allinea DDT leaps to source automatically

How did it happen? 

• Detailed error message given to the user

• Some faults evident instantly from source 

Why did it happen?

• Unique “Smart Highlighting”

• Sparklines comparing data across processes

Run

with Allinea tools

Identify 
a problem

Gather info
Who, Where, 

How, Why

Fix
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Allinea DDT cheat sheet

Prepare the code

• $ mpicc -O0 -g myapp.c –o myapp.exe

Load the environment module 

• $ module load allinea-forge

Start Allinea DDT in interactive mode (in an interactive job session)

• $ ddt srun ./myapp.exe arg1 arg2

Or use the reverse connect mechanism (by submitting a batch job)

• On the login node:

• $ ddt &

• (or use the remote client http://www.allinea.com/products/downloads/)

• Then, edit the job script to run the following command and submit:

• ddt --connect mpirun -n 8 ./myapp.exe arg1 arg2

http://www.allinea.com/products/downloads/
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Example 1

Copy the archive in your working directory

• $ cp
/scratch/k/k203064/flebeau/allinea_workshop.tar.gz .

• $ tar xzvf allinea_workshop.tar.gz

• $ cd allinea_workshop

Load the environment

• $ . env

And go to the first exercise

• $ cd 1_interactive_debugging/

Compile with:

• $ make

And submit the job

• $ sbatch job.sub

The initial application crashes

Recompile for debugging with:

• $ make DEBUG=1

Launch Allinea DDT on the login node, edit 
the job script to prefix the execution 
command with “ddt --connect” and debug 
the application
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How to profile?

Different methods

• Tracing

– Records and timestamps all operations

– Intrusive

• Instrumenting

– Add instructions in the source code to collect data

– Intrusive

• Sampling

– Automatically collect data

– Not intrusive
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Some types of profiles

Hotspot

• One function corresponds to more 80% of the runtime

• Large speed-up potential

• Best optimisation scenario

Spike

• The application spends most of the time in a few functions

• Speed-up potential depends on the aggregated time

• Variable optimisation time

Flat

• Runtime split evenly between numerous functions, each one with a very small runtime

• Little speed-up potential without algorithmic changes

• Worst optimisation scenario
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Allinea MAP: Performance made easy

Low overhead measurement

• Accurate, non-intrusive application performance profiling

• Seamless – no recompilation or relinking required

Easy to use

• Source code viewer pinpoints bottleneck locations

• Zoom in to explore iterations, functions and loops

Deep

• Measures CPU, communication, I/O and memory to identify problem causes

• Identifies vectorization and cache performance
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Allinea MAP cheat sheet

Prepare the code

• $ mpicc –O3 -g myapp.c –o myapp.exe

Load the environment module 

• $ module load allinea-forge

Edit the job script to run Allinea MAP in “profile” mode

• $ map --profile srun ./myapp.exe arg1 arg2

Open the results

• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map

• (or load the corresponding file using the remote client http://www.allinea.com/products/downloads/)

http://www.allinea.com/products/downloads/
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Example 2

Go to

• $ cd 2_profiling/

Compile with:

• $ make

Edit the job script to prefix the execution command with “map --profile” and submit the 
job

• $ sbatch job.sub

Analyse the profiling results

• $ map *.map
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Analysing Memory Issues
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It works… Well, most of the time

A strange behaviour where the 
application “sometimes” crashes is a 
typical sign of a memory bug

Allinea DDT is able to force the crash 
to happen

•I am buggy 
AND not 
buggy. How 
about that?

SCHRODIN
BUG !
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Memory debugging menu in Allinea DDT
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Heap debugging options available

basic
•Detect invalid pointers 

passed to memory 
functions 
(e.g. malloc, free, 
ALLOCATE, 
DEALLOCATE,...) 

check-fence
•Check the end of an 

allocation has not been 
overwritten when it is 
freed. 

free-protect
•Protect freed memory 

(using hardware 
memory protection) so 
subsequent read/writes 
cause a fatal error. 

Added goodiness
•Memory usage, 

statistics, etc. 

Fast free-blank
•Overwrite the bytes of 

freed memory with a 
known value. 

alloc-blank
•Initialise the bytes of 

new allocations with a 
known value.

check-heap
•Check for heap 

corruption (e.g. due to 
writes to invalid 
memory addresses).

realloc-copy
•Always copy data to a 

new pointer when re-
allocating a memory 
allocation (e.g. due to 
realloc)

Balanced check-blank
•Check to see if space 

that was blanked when 
a pointer was 
allocated/freed has 
been overwritten.

check-funcs
•Check the arguments of 

addition functions 
(mostly string 
operations) for invalid 
pointers. 

Thorough

See user-guide:

Chapter 12.3.2
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Guard pages (aka “Electric Fences”)

A powerful feature…:
• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

… to be used carefully:
• Kernel limitation: up to 32k guard pages max ( “mprotect fails” error)
• Beware the additional memory usage cost

4 kBytes
(typically)

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE
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Example 3

Go to

• $ cd 3_mem_dbg/

Compile with:

• $ make

• /!\ Don’t forget to compile with “-O0 -g”

Edit the job script to prefix the execution command with “ddt --connect”, launch ddt on 
the login node and submit the job

• $ ddt &

• $ sbatch job.sub

In the “Run” window, select “Fast” memory debugging first

Submit the job again and enable “Guard pages”
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Detecting Deadlocks



© 2017 Arm Limited 25

My application has been running for a while now…

A strange behaviour where the 
application runs for “longer than 
expected” is a typical sign of a 
deadlock.

The application is hanging in the 
queue: alive and dead…

Allinea DDT is able to attach to the 
running processes and observe 
what is happening.

•I am buggy 
AND not 
buggy. How 
about that?

SCHRODIN
BUG !
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Example 4

Go to

• $ cd 4_deadlock/

Compile with:

• $ make

• Start Allinea DDT

Run the job with 10 processes: it works. 

• $ srun --account=kg0166 --partition=compute -N 1 -n 10 ./cpi.exe

Run it again with 8 processes: it hangs!

• $ srun --account=kg0166 --partition=compute -N 1 -n 8 ./cpi.exe

In Allinea DDT’s GUI, select “Attach” from the main menu.

Allinea DDT should be able to detect the application automatically. Select it and debug it!
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MPMD Applications
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Example 5: How to run Forge on MPMD applications

Same logic, just prefix the execution command with the command:

• $ cd 5_mpmd/

• $ ddt --connect mpirun -n 8 myapp1.exe : -n 16 myapp2.exe

• $ map --profile srun –multi-prog cmd.srun

• With cmd.srun:

0-7   ./myapp1.exe

8-23 ./myapp2.exe

Since 7.1, the ranks to profile can be specified:

• $ map --select-ranks=0-7 --profile srun cmd.srun
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Allinea DDT in manual launch

For complex launch mechanisms, for example if SLURM actually launches wrapper scripts,  
it is possible to launch the debugger in manual launch.

To do so:

• Launch the GUI on the login node and select “Manual Launch” from the Allinea DDT GUI

• Specify the number of processes and click on “Listen”

• The debugger now awaits for the processes to connect

• Click on “Help” on the window to know how to connect the processes

• By prefixing the processes to debug in the wrapper script with the following for example:

• ddt-client --ddtsessionfile /home/flebeau/.allinea/session/toutatis-1 PROGRAM

• Submit the job and see the processes attaching in the debugger 
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Increase Productivity with 
Automation
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ESiWACE Project partner
Centre of Excellence in Simulation of Weather and Climate in Europe

A main goal of ESiWACE is to substantially 
improve efficiency and productivity of 
numerical weather and climate simulation 
on high-performance computing platforms 
by supporting the end-to-end workflow of 
global Earth system modelling in HPC 
environment.
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Automation script example
#!/bin/bash –l
# Job submission file name
jobfile=test_jacobi_mpi_omp_gnu.sub
# Load environment 
module load compiler/gnu mpi/openmpi_gnu
module load allinea/perf-report
# Compile
make clean && make

# Job submission file configuration
cat << EOF > $jobfile
#!/bin/bash –l 
#SBATCH --job-name=‘test_jacobi_mpi_omp_gnu‘
#SBATCH --time=00:05:00
#SBATCH --ntasks=128              

#SBATCH –ntasks-per-node=2
export OMP_NUM_THREADS=16
srun ./jacobi_omp_mpi_gnu.exe
EOF

# Submit
sbatch $jobfile

# Check results
[…]

Compile

Execute

Test
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Automate profiling

--output specifies the name of the output

• *.map file

--stop-after=X enables to stop sampling after X seconds after the program starts

--start-after=Y enables to start sampling after Y seconds after the program starts

--export=FILE exports a specified *.map file in JSON file

map --profile --output jacobi_omp_mpi_gnu_perf.map \

--stop-after=300

srun ./jacobi_omp_mpi_gnu.exe

map --export=jacobi_omp_gnu_perf.json jacobi_omp_gnu_perf.map
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Automate debugging

--offline enable non-interactive debugging

-o specifies the name and output of the non-interactive debugging session

• Html

• Txt

ddt --offline -o jacobi_omp_mpi_gnu_debug.txt \

--trace-at _jacobi.F90:83,residual \

srun ./jacobi_omp_mpi_gnu.exe
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Automate debugging

fail=0
# --- check DDT tracepoint (residual)
f=jacobi_omp_mpi_gnu_debug.txt
resid=`grep ^tracepoint $f | awk -Fresidual:  '{print $2}' |tail -1 |cut -c2-5`
if [ "$resid" != "2.57" ] ; then

((fail++))
echo "Test has failed resid=$resid“

else
echo “Test has succeeded”

# Time Tracepoint Processes Values

1 21:18.172 jacobi_mpi_omp_gnu.exe 
(_jacobi.f90:83) 

0-127 residual: 2.57
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Automate debugging

Other available options:

o --trace-changes: set a tracepoint on the variable introduced by the 
latest commit (git, svn, mercurial)

o --break-at: set a breakpoint

o --mem-debug: check for memory defects and leaks

o --check-bounds: check for out of bounds array accesses
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Development process workflow

FORGE

ANALYZE

(Allinea 
Performance 

Reports)

DEBUGGING

(Allinea DDT)

PERF
OPTIMIZATION 

(Allinea MAP)

Demand for software 
efficiency

Debug/optimize, edit, 
commit, build, repeat

Demand for developer 
efficiency

Version Control
(e.g. GIT, etc…)

Continuous Integration
(e.g. Jenkins, etc.)

Open Interfaces
(e.g. JSON APIs) DB

NEW 
VERSION
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Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
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