
© 2015

MISTRAL : bull
environment

Application & Performance team

Pascale Girard

Cyril Mazauric

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Introduction

▶ MPI environment

– bullxmpi, mxm and fca

▶ feedback from the benchmark

– Call for tender rules

– Optimization strategy

– Two examples : EMAC and ICON

▶ best-practices on setting the environment for bullxmpi

– How to find variables to tune your application ?

– Examples

2

Agenda

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

MPI environment

3

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

MPI environment

▶ you will find on mistral

– bullxMPI_mlx : openmpi 1.6.5 compiled with mellanox tools

– bullxMPI_mlx_mt : idem + thread multiple support

▶ How to use bullxmpi ?

module load compiler intel

module load mxm/<version>

module load fca/<version>

module load bullxmpi_mlx/<version>

4

bullxmpi_mlx

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Fabric Collective Accelerator (FCA)
▶ FCA is a Mellanox MPI-integrated software package that utilizes CORE-Direct technology for implementing the MPI collectives

communications. FCA can be used with all major commercial and open-source MPI solutions that exist and being used for high-
performance applications. FCA with CORE-Direct technology accelerates the MPI collectives runtime, increases the CPU
availability to the application and allows overlap of communications and computations with asynchronous collective operations.

 Significantly reduce MPI collective operations runtime

 Efficient collective communication flow optimized to job and topology

 Increase CPU availability and efficiency

 Eliminate congestion caused by collective traffic

 No need for any additional hardware to install or manage

 No space/power/cooling penalty

 Seamless integration with MPI libraries and job schedulers

 Future proof with embedded support for MPI-3

Messaging Accelerator (MXM)
▶ Mellanox Messaging Accelerator (MXM) provides enhancements to parallel communication libraries by fully utilizing the

underlying networking infrastructure provided by Mellanox HCA/switch hardware. This includes a variety of enhancements that
take advantage of Mellanox networking hardware including:

 Multiple transport support including RC, XRC and UD

 Proper management of HCA resources and memory structures

 Efficient memory registration

 One-sided communication semantics

 Connection management

 Receive side tag matching

 Intra-node shared memory communication

MPI environment

Mellanox tools

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

MPI environment

openmpi and mellanox tools ?

MPI

PML – OB1 PML – CM

BTL - OPENIB MTL - PSM MTL - MXM

export OMPI_MCA_pml=cm
export OMPI_MCA_mtl=mxm

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

MPI environment

openmpi and mellanox tools ?

MPI

PML – OB1 PML – CM

BTL - OPENIB MTL - PSM MTL - MXM

export OMPI_MCA_mtl=^mxm
export OMPI_MCA_pml=^cm
export OMPI_MCA_pml=ob1

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

MPI environment

openmpi and mellanox tools ?

MPI

coll – GHC coll – FCA coll – tuned

GHC has been developed to optimized
collectives operations between islands when
the pruning factor is important

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

MPI environment

openmpi and mellanox tools ?

MPI

coll – GHC coll – FCA coll – tuned

FCA has been developed by Mellanox to
optimized collectives operations : AllGather,
AllReduce, Barrier, Bcast

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

MPI environment

openmpi and mellanox tools ?

MPI

coll – GHC coll – FCA coll – tuned

tuned is the default openmpi module
developped to optimized collectives operations

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

MXM and FCA impact on

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Benefit

Loss

▶ Best performance measured with MXM and FCA

Comm :
35%

1,06

1,09

0

0,2

0,4

0,6

0,8

1

1,2

1,4

bullxmpi 1.2.4.1 bullxmpi 1.2.4.1 + mlx MISTRAL

FESOM : 1572 cores

MPI environment

FESOM 1572 cores

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Benefit

Loss

▶ Best performance measured with MXM (no FCA)

Comm :
40%

1,02
1,04

0

0,2

0,4

0,6

0,8

1

1,2

1,4

bullxmpi 1.2.4.1 bullxmpi 1.2.4.1 + mlx MISTRAL

COSMO : 1504 cores

MPI environment

COSMO 1504 cores

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

▶ Best scalability with bullxmpi installed on MISTRAL

MPI environment

COSMO

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Benefit

Loss

▶ Best performance measured with MXM and FCA

Comm :
44%

1,04 1,04

0

0,2

0,4

0,6

0,8

1

1,2

1,4

bullxmpi 1.2.4.1 bullxmpi 1.2.4.1 + mlx MISTRAL

EMAC : 258 cores

MPI environment

EMAC

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Another example

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance
17

▶ Without mxm = 500 nodes are necessary to decrease the time
execution down to 1469 sec.

▶ With mxm = 412 nodes !

MPI environment

UM : how many nodes should we used to reach 1469 sec ?

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

feedback from benchmark

18

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

▶ ASIS version

– Code analyse : input parameters tuning

– Number of OpenMP threads and MPI tasks

– Intel compiler options

– Environment parameters : transparent huge page, drop cache, memory
tuning, Turbo mode, hyperthreading…

– Profiling MPI : MPI tuning using BullxMPI & MXM (and FCA), specific setting
(Bcast algorithm, buffer size, MXM tuning…)

– Use external libraries : memory alignment (aalloc…), BullxLib, MKL

▶ Optimized version

– Identify hotspot (gprof, perftop, Allinea tools, Intel tools : vtune…)

– Try to adapt the code to the Intel technology

This work has been stopped when our commitments have been achieved… but
this kind of work should be continued

26

Performance optimization strategy

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

▶ EMAC

– ECHAM5 / Messy Atmosphere Chemistry model

– Code in Fortran, parallelized with MPI, using NETCDF and HDF5 libraries

▶ Best environment setting

– Specific compiler options : -fp-model strict -O2 -xCORE-AVX2 –ftz

– Use transparent huge page

– Use memory tuning :

• MALLOC_MMAP_MAX_=0

• MALLOC_TRIM_THRESHOLD_=-1

– MPI communications

• 32% of the execution time is spent in MPI communications

• 86% of communication time = MPI_Bcast

• Use BullxMPI and MXM (no GHC, no FCA)

• Bcast tuning : OMPI_MCA_coll_tuned_bcast_algorithm=2

27

First example : EMAC

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

▶ Best environment found (suite)

– Domain decomposition :
number of MPI tasks = NP_X x NP_Y

28

First example : EMAC

500

550

600

650

700

750

800

220 230 240 250 260

T
im

e
 (

s
)

cores

EMAC - ASIS
reduce test case

240 = 16 x 15
 = 15 x16
 = 12 x 20
 = 10 x 24
 = 8 x 30
 = 6 x 40

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

▶ BullxLIB library

– About 15% of the execution time spent in POWR8I4 function (when the
application raise a real to integer exponent)

– About 8% in EXP.L

This library is focused on the optimisation of

– X**(-4)

– X**3

29

First example : EMAC

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

▶ BullxLIB library

– About 15% of the execution time spent in POWR8I4 function (when the
application raise a real to integer exponent)

– About 8% in EXP.L

This library is focused on the optimisation of

– X**(-4)

– X**3

▶ Code modification : Optimized version

– Loop reordering because in Fortran arrays are stored in column-major
order.
This implies that the matrix A will be stored in memory as
(a11,a21,a12,a22) (in contrast, in a row-major order like C language,
the order would be a11, a12, a21, a22).
Thus, accessing the elements of A column-wise is most efficient.

– Consolidation of two loops (to increase the data reuse)

– Decrease the number of division and multiplication by factorisation

30

First example : EMAC

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

▶ ASIS

– Target time = 14 000 s

– Achieved using

• 11 nodes without Turbo mode (258 cores)

• or 10 nodes with Turbo mode (240 cores)

▶ Optimized

– Target time = 14 000 s

– Achieved using 8 nodes with Turbo mode (176 cores)

31

First example : EMAC

Gain on OPTIM = 27%

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

32

Second example : ICON

▶ ICON

– ICOsahedral Non-hydrostatic model

– Code in Fortran, parallelized with MPI and OpenMP, using NETCDF and
HDF5 libraries

– 2 test cases : APE (target time = 600s) and LAM (16 000 cores)

▶ Best environment setting

– Specific compiler options :
-ip -ansi-alias –pad -fast-transcendentals -align array64byte -xCORE-AVX2

– Use transparent huge page

– Zone reclaim

– Use memory tuning :

• MALLOC_MMAP_MAX_=0

• MALLOC_TRIM_THRESHOLD_=-1

– Use record buffer for I/O

• FORT_BUFFERED=true

• decfort_dump_flag=true

– MPI communications

• Use BullxMPI and MXM (no GHC, no FCA)

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

▶ Best environment setting (suite)

– OpenMP tuning

• OMP_STACKSIZE=64M

• KMP_BLOCKTIME=1

• OMP_WAIT_POLICY=PASSIVE

– OpenMP threads / MPI tasks and hyperthreading

33

Second example : ICON

Test case #nodes

Execution time (s)

HT ON HT OFF

24 MPI
x 2 OMP

12 MPI
x 4 OMP

8 MPI
x 6 OMP

6 MPI
x 8 OMP

4 MPI
x 12 OMP

24 MPI
x 1 OMP

12 MPI
x 2 OMP

6 MPI
x 4 OMP

APE

141 834 831 821 837 848 882 883

190 630 615 628 625 637

192 610 604 612 610 631

194 617 601 606 603 628

282 443 425 426 433 441

388 391 327 328 325 336 455 330 328

564 390 248 245 238 241 402 241 237

667 121 111 111 111 133 120 104

LAM 776 392 235 199 194 209 400 217 188

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

▶ Code modification : ASIS version

– Adding guideline to force the vectorization on loops

(OMP directives “omp simd”)

– Adding guideline to align data

▶ Code modification : Optimized version

– The main bottleneck is related to the memory : data structure is critical.
We were not able to modify it…

– Few modifications :

• Remove some not needed if statements

• Replace some if statements by merge

• Split some loops (to improve the data reuse)

34

Second example : ICON

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Feedback from the benchmark

▶ ASIS (APE)

– Target time = 600 s

– Achieved using 198 nodes with Turbo mode & hyperthreading (8 MPI x
4 OMP per node)

▶ Optimized (APE)

– Target time = 600 s

– Achieved using 194 nodes with Turbo mode & hyperthreading (8 MPI x
4 OMP per node)

35

Second example : ICON

Gain on OPTIM = 2%

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

best-practices on setting the
environment for bullxmpi

37

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

Why interconnect is a fat tree ?

▶ cosmo on 31 nodes is our reference. With 40 occurrences mistral is full
(almost)

▶ Deviation is lower than 5%

38

Cosmo

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

how to find variables to tune your application ?

▶ Once environment is correctly loaded

module load compiler intel

module load mxm/<version>

module load fca/<version>

module load bullxmpi_mlx/<version>

▶ MXM (messaging accelerator)

 mxm_dump_config –t

▶ BTL(openmpi default device)

 ompi_info –all

39

bullxmpi

export OMPI_MCA_mtl=^mxm
export OMPI_MCA_pml=^cm
export OMPI_MCA_pml=ob1

BTL

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

how to find variables to tune your application ?

▶ FCA (Mellanox collectives accelerator)

 ompi_info –all

▶ tuned (openmpi default)

 ompi_info –all -mca coll_tuned_use_dynamic_rules

40

bullxmpi

export OMPI_MCA_coll=^ghc
export OMPI_MCA_coll_fca_priority=95
export OMPI_MCA_coll_fca_enable=1

FCA

export OMPI_MCA_coll=^ghc,fca

tuned

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

▶ a good environment : bullxmpi with mxm

module load compiler intel

module load mxm/<version>

module load fca/<version>

module load bullxmpi_mlx/<version>

export OMPI_MCA_pml=cm

export OMPI_MCA_mtl=mxm

export OMPI_MCA_coll=^ghc

export MXM_RDMA_PORTS=mlx5_0:1

41

mxm will improve the
scalability

A MPI setting by default ?

bullxmpi

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

▶ a good environment : bullxmpi with mxm

module load compiler intel

module load mxm/<version>

module load fca/<version>

module load bullxmpi_mlx/<version>

export OMPI_MCA_pml=cm

export OMPI_MCA_mtl=mxm

export OMPI_MCA_coll=^ghc

export MXM_RDMA_PORTS=mlx5_0:1

42

FDR interconnect is a
full fat tree without
island. GHC is not
efficient and should
not be used

A MPI setting by default ?

bullxmpi

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

▶ a good environment : bullxmpi with mxm

module load compiler intel

module load mxm/<version>

module load fca/<version>

module load bullxmpi_mlx/<version>

export OMPI_MCA_pml=cm

export OMPI_MCA_mtl=mxm

export OMPI_MCA_coll=^ghc

export MXM_RDMA_PORTS=mlx5_0:1

43

MXM will use the
correct infiniband
device : mlx5

A MPI setting by default ?

bullxmpi

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

A MPI setting by default ?

▶ a good environment : bullxmpi with mxm

module load compiler intel

module load mxm/<version>

module load fca/<version>

module load bullxmpi_mlx/<version>

export OMPI_MCA_pml=cm

export OMPI_MCA_mtl=mxm

export OMPI_MCA_coll=^ghc

export MXM_RDMA_PORTS=mlx5_0:1

44

bullxmpi

you will use mxm and
tuned for collectives.
FCA could be used
with the correct
setting

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

How to find a good MPI tuning ?

▶ You need to use a MPI profiler which will show you which MPI functions
are used.

45

Profiling

MPI Communications Statistics:
=============================

Total Parallel time : 7281.543846 s
Total Communication time : 551.369430 s
Ratio : 8 %

Accumulated data of all processes:
=================================
 Min [R] Max [R] Average Stand dev.

Parallel time: 910.185775 [7] 910.239525 [0] 910.192981 0.017595 (0.00 %)
Communication time: 21.771790 [0] 150.005858 [7] 68.921179 58.516123 (84.90 %)
……
MPI_Allreduce: 303.233854 s (55.00 %)
 number 16730 [0] 16730 [0] 16730.00
 time (s) 4.767301 [0] 106.838756 [6] 37.904232
 size (b) 135232 [0] 135232 [0] 135232.00

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

How to find a good MPI tuning ?

▶ The main MPI funtion is MPI_Wait

– Is it logical ?

– nothing to do

– Bad synchronization ?

– change the mpi tasks binding to improve the performance

– srun –m cyclic (round-robin distribution inter nodes)

– srun –m cyclic:cyclic (round-robin inter and intra nodes)

– messages are waiting because the messages sizes are too small ?

– try to pack your messages to take advantage of the interconnect
bandwidth

46

Example : MPI_Wait

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

How to find a good MPI tuning ?

▶ The main MPI funtion is MPI_Barrier

– Are they really necessary ?

• Usually, MPI_Barrier are used to clean the output files , removing all

barrier could improve the performance or highlight which MPI functions are
hidden.

you can create a library which replace the MPI_Barrier call by nothing

int MPI_Barrier(MPI_Comm comm) { return 0; }

47

Example : MPI_Barrier

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

How to find a good MPI tuning ?

▶ The main MPI funtion is MPI_allReduce (or another collectives operation)

– fca

• check with “ompi_info --all” if the variable coll_fca_enable_allreduce is set to
1

MCA coll: parameter "coll_fca_enable_allreduce" (current value: "1", data source: default, level: 9 dev/all,
type: int)

 [1|0|] Enable/Disable FCA Allreduce support

48

Example : MPI_allreduce

 | 01-07-2015 | Cyril Mazauric | © ATOS 2015
France | BD&S | Applications and Performance

How to find a good MPI tuning ?

– But as we know IMB is not the real life !

– tuned

• test all tuned algorithm

 MCA coll: informational "coll_tuned_allreduce_algorithm_count" (current value: "5….)

 MCA coll: parameter "coll_tuned_allreduce_algorithm"

 Which allreduce algorithm is used. Can be locked down to any of: 0 ignore, 1 basic
linear, 2 nonoverlapping (tuned reduce + tuned bcast), 3 recursive doubling, 4 ring, 5 segmented ring

export OMPI_MCA_coll_tuned_use_dynamic_rules=1

export OMPI_MCA_ coll_tuned_allreduce_algorithm={1 2 3 4 or 5}

49

Example : MPI_allreduce

Atos, the Atos logo, Atos Consulting, Atos Worldgrid, Worldline,
BlueKiwi, Canopy the Open Cloud Company, Yunano, Zero Email, Zero
Email Certified and The Zero Email Company are registered
trademarks of Atos. January 2015. © 2015 Atos. Confidential
information owned by Atos, to be used by the recipient only. This
document, or any part of it, may not be reproduced, copied, circulated
and/or distributed nor quoted without prior written approval from
Atos.

© For internal use

Thanks

For more information please contact: Pascale Girard or
Cyril Mazauric

Pascale.Girard@atos.net

Cyril.Mazauric@atos.net

