Hands-on: NPB-MZ-MPI / BT

VI-HPS Team

Tutorial exercise objectives

- Familiarize with usage of Score-P, Cube, Scalasca & Vampir
 - Complementary tools' capabilities & interoperability
- Prepare to apply tools productively to your application(s)
- Exercise is based on a small portable benchmark code
 - Unlikely to have significant optimization opportunities

Local setup

- Load environment modules
 - Required for each shell session

```
% module load intel/16.0.3
% module load mxm/3.3.3002
% module load fca/2.5.2393
% module load bullxmpi_mlx/bullxmpi_mlx-1.2.8.3
```

Copy & extract the tutorial sources

```
% cp /work/kg0166/PATworkshop2016/NPB3.3-MZ-MPI.tar.gz .
% tar zxvf NPB3.3-MZ-MPI.tar.gz
% cd NPB3.3-MZ-MPI
```


NPB-MZ-MPI suite

- The NAS Parallel Benchmark suite (MPI+OpenMP version)
 - Available from http://www.nas.nasa.gov/Software/NPB
 - 3 benchmarks in Fortran77
 - Configurable for various sizes & classes
- Move into the NPB3.3-MZ-MPI root directory

```
% ls
bin/ common/ jobscript/ Makefile README.install SP-MZ/
BT-MZ/ config/ LU-MZ/ README README.tutorial sys/
```

- Subdirectories contain source code for each benchmark
 - Plus additional configuration and common code
- The provided distribution has already been configured for the tutorial, such that it is ready to "make" one or more of the benchmarks and install them into a (tool-specific) "bin" subdirectory

Building an NPB-MZ-MPI benchmark

```
% make
        NAS PARALLEL BENCHMARKS 3.3
        MPI+OpenMP Multi-Zone Versions
 To make a NAS multi-zone benchmark type
        make <benchmark-name> CLASS=<class> NPROCS=<nprocs>
 where <benchmark-name> is "bt-mz", "lu-mz", or "sp-mz"
                      is "S", "W", "A" through "F"
       <class>
       <nprocs>
                       is number of processes
  [...]
 * Custom build configuration is specified in config/make.def
 * Suggested tutorial exercise configuration for Mistral:
        make bt-mz CLASS=B NPROCS=4
```

Type "make" for instructions

Building an NPB-MZ-MPI benchmark

```
% make bt-mz CLASS=B NPROCS=4
make[1]: Entering directory `BT-MZ'
make[2]: Entering directory `sys'
icc -o setparams setparams.c -lm
make[2]: Leaving directory `sys'
../sys/setparams bt-mz 4 B
make[2]: Entering directory `../BT-MZ'
mpif77 -c -O3 -qopenmp bt.f
mpif77 -c -O3 -qopenmp mpi setup.f
cd ../common; mpif77 -c -O3 -gopenmp print results.f
cd ../common; mpif77 -c -O3 -qopenmp timers.f
mpif77 -O3 -qopenmp -o ../bin/bt-mz B.4 bt.o
initialize.o exact solution.o exact rhs.o set constants.o adi.o
 rhs.o zone setup.o x solve.o y solve.o exch qbc.o solve subs.o
 z solve.o add.o error.o verify.o mpi setup.o ../common/print results.o
 ../common/timers.o
make[2]: Leaving directory `BT-MZ'
Built executable ../bin/bt-mz B.4
make[1]: Leaving directory `BT-MZ'
```

- Specify the benchmark configuration
 - benchmark name: bt-mz, lu-mz, sp-mz
 - the number of MPI processes: NPROCS=4
 - the benchmark class (S, W, A, B, C, D, E): CLASS=**B**

Shortcut: % make suite

NPB-MZ-MPI / BT (Block Tridiagonal Solver)

- What does it do?
 - Solves a discretized version of the unsteady, compressible Navier-Stokes equations in three spatial dimensions
 - Performs 200 time-steps on a regular 3-dimensional grid
- Implemented in 20 or so Fortran77 source modules
- Uses MPI & OpenMP in combination
 - Proposed hands-on setup on Mistral:
 - 2 compute nodes of "compute" partition
 - 4 MPI processes with 12 OpenMP threads each
 - bt-mz_B.4 should run in around 11 seconds

NPB-MZ-MPI / BT reference execution

```
% cd bin
% cp ../jobscript/mistral/reference.sbatch .
% vim reference.sbatch
% sbatch reference.sbatch
% less mzmpibt.o<job id>
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 16 x 16
Iterations: 200 dt: 0.000300
Number of active processes: 4
Total number of threads: 48 (12.0 threads/process)
Time step
Time step
            20
 [...]
Time step 180
Time step 200
Verification Successful
BT-MZ Benchmark Completed.
Time in seconds = 10.79
```

- Copy jobscript
- Set project account
- Launch as a hybrid MPI+OpenMP application

Hint: save the benchmark output (or note the run time) to be able to refer to it later

Tutorial exercise steps

- Edit config/make.def to adjust build configuration
 - Modify specification of compiler/linker: MPIF77
 - See next slide for details
- Make clean and build new tool-specific executable

```
% make clean
% make bt-mz CLASS=B NPROCS=4
Built executable ../bin.$(TOOL)/bt-mz_B.4
```

 Change to the directory containing the new executable before running it with the desired tool configuration

```
% cd bin.$(TOOL)
% cp ../jobscript/mistral/$(TOOL).sbatch .
% vim $(TOOL).sbatch
% sbatch $(TOOL).sbatch
```


NPB-MZ-MPI / BT: config/make.def

```
SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS.
 Configured for generic MPI with INTEL compiler
                                                                                  Default (no instrumentation)
#OPENMP = -fopenmp  # GCC compiler
OPENMP = -qopenmp  # Intel compiler
# The Fortran compiler used for MPI programs
MPIF77 = mpif77 # Intel compiler
# Alternative variant to perform instrumentation
#MPIF77 = scorep --user mpif77
# PREP is a generic preposition macro for instrumentation preparation
                                                                                 Hint: uncomment a compiler
\#MPIF77 = \$(PREP) mpif77
                                                                                 wrapper to do instrumentation
```