
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Congratulations!?

 If you made it this far, you successfully used Score-P to
 instrument the application
 analyze its execution with a summary measurement, and
 examine it with one the interactive analysis report explorer GUIs

 ... revealing the call-path profile annotated with
 the “Time” metric
 Visit counts
 MPI message statistics (bytes sent/received)

 ... but how good was the measurement?
 The measured execution produced the desired valid result
 however, the execution took rather longer than expected!

 even when ignoring measurement start-up/completion, therefore
 it was probably dilated by instrumentation/measurement overhead

2DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation

 1.1 Summary measurement collection

 1.2 Summary analysis report examination

 2.0 Summary experiment scoring

 2.1 Summary measurement collection with filtering

 2.2 Filtered summary analysis report examination

 3.0 Event trace collection

 3.1 Event trace examination & analysis

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis result scoring

 Report scoring as textual

output

 Region/callpath classification

 MPI pure MPI functions
 OMP pure OpenMP regions
 USR user-level computation
 COM “combined” USR+OpenMP/MPI
 ANY/ALL aggregate of all region

types

% scorep-score scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 40 GB

Estimated requirements for largest trace buffer (max_buf): 11 GB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 11 GB

(warning: The memory requirements cannot be satisfied by Score-P to avoid

intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the

maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

ALL 10,751,698,480 1,639,454,685 1370.23 100.0 0.84 ALL

USR 10,666,890,182 1,631,138,069 490.57 35.8 0.30 USR

OMP 83,505,728 8,128,000 876.29 64.0 107.81 OMP

COM 1,178,450 181,300 1.00 0.1 5.49 COM

MPI 124,120 7,316 2.37 0.2 324.30 MPI

40 GB total memory

11 GB per rank!

4

USR

USR

COM

COM USR

OMP MPI

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report breakdown

 Score report breakdown by region

5

% scorep-score -r scorep_bt-mz_sum/profile.cubex

[...]

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

ALL 10,751,698,480 1,639,454,685 1370.23 100.0 0.84 ALL

USR 10,666,890,182 1,631,138,069 490.57 35.8 0.30 USR

OMP 83,505,728 8,128,000 876.29 64.0 107.81 OMP

COM 1,178,450 181,300 1.00 0.1 5.49 COM

MPI 124,120 7,316 2.37 0.2 324.30 MPI

USR 3,421,305,420 522,844,416 152.22 11.1 0.29 matmul_sub_

USR 3,421,305,420 522,844,416 109.03 8.0 0.21 matvec_sub_

USR 3,421,305,420 522,844,416 212.79 15.5 0.41 binvcrhs_

USR 150,937,332 22,692,096 5.23 0.4 0.23 binvrhs_

USR 150,937,332 22,692,096 8.04 0.6 0.35 lhsinit_

USR 112,194,160 17,219,840 3.25 0.2 0.19 exact_solution_

USR

USR

COM

COM USR

OMP MPI

More than

9 GB just for these 6

regions

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis score

 Summary measurement analysis score reveals

 Total size of event trace would be ~40 GB

 Maximum trace buffer size would be ~11 GB per rank

 smaller buffer would require flushes to disk during measurement resulting in substantial perturbation

 99.75% of the trace requirements are for USR regions

 purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel

regions

 These USR regions contribute around 36% of total time

 however, much of that is very likely to be measurement overhead for frequently-executed small routines

 Advisable to tune measurement configuration

 Specify an adequate trace buffer size

 Specify a filter file listing (USR) regions not to be measured

6DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Report scoring with

prospective filter listing 6

USR regions

7

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN EXCLUDE

binvcrhs*

matmul_sub*

matvec_sub*

exact_solution*

binvrhs*

lhs*init*

timer_*

% scorep-score -f ../config/scorep.filt [-c 2] \

scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 324 MB

Estimated requirements for largest trace buffer (max_buf): 81 MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 105 MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=21MB to avoid \

>intermediate flushes

or reduce requirements using USR regions filters.)

324 MB of memory in total,

81 MB per rank!

Including 2 metric values:

792 MB

198 MB

222 MB

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Score report breakdown

by region

8

% scorep-score -r –f ../config/scorep.filt \

scorep_bt-mz_sum/profile.cubex

flt type max_buf[B] visits time[s] time[%] time/ region

visit[us]

- ALL 10,751,698,480 1,639,454,685 1370.23 100.0 0.84 ALL

- USR 10,666,890,182 1,631,138,069 490.57 35.8 0.30 USR

- OMP 83,505,728 8,128,000 876.29 64.0 107.81 OMP

- COM 1,178,450 181,300 1.00 0.1 5.49 COM

- MPI 124,120 7,316 2.37 0.2 324.30 MPI

* ALL 84,812,796 8,317,305 879.66 64.2 105.76 ALL-FLT

+ FLT 10,666,885,710 1,631,137,380 490.57 35.8 0.30 FLT

- OMP 83,505,728 8,128,000 876.29 64.0 107.81 OMP-FLT

* COM 1,178,450 181,300 1.00 0.1 5.49 COM-FLT

- MPI 124,120 7,316 2.37 0.2 324.30 MPI-FLT

* USR 4,498 689 0.00 0.0 3.75 USR-FLT

+ USR 3,421,305,420 522,844,416 152.22 11.1 0.29 matmul_sub_

+ USR 3,421,305,420 522,844,416 109.03 8.0 0.21 matvec_sub_

+ USR 3,421,305,420 522,844,416 212.79 15.5 0.41 binvcrhs_

+ USR 150,937,332 22,692,096 5.23 0.4 0.23 binvrhs_

+ USR 150,937,332 22,692,096 8.04 0.6 0.35 lhsinit_

+ USR 112,194,160 17,219,840 3.25 0.2 0.19 exact_solution_

Filtered
routines

marked with
‘+’

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ filtered summary measurement

9

 Set new experiment

directory and re-run

measurement with new

filter configuration

 Submit job

% cd bin.scorep

% <editor> scorep.sbatch

[…]

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum_filter

export SCOREP_FILTERING_FILE=../config/scorep.filt

[…]

% sbatch scorep.sbatch

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Advanced Application Instrumentation

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Application Instrumentation: Score-P Wrapper Scripts

 Hooking up the Score-P instrumenter scorep into complex build environments like

Autotools or CMake was always challenging

 Score-P provides new convenience wrapper scripts to simplify this (since Score-P 2.0)

 Autotools and CMake need the used compiler already in the configure step, but

instrumentation should not happen in this step, only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via

environment variables without modifying the Makefiles

 Run scorep-wrapper --help for a detailed description and the available wrapper

scripts of the Score-P installation

11DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

% SCOREP_WRAPPER=off \

> cmake .. \

> -DCMAKE_C_COMPILER=scorep-icc \

> -DCMAKE_CXX_COMPILER=scorep-icpc

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Advanced Measurement Configuration

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Measurement Configuration: Sampling

 Sampling as an additional source of events while measurement

 Novel combination of sampling events and instrumentation of MPI, OpenMP, …
 Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead)
 Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies

 Supports profile and trace generation

 Available since Score-P 2.0, only x86-64 supported currently

13DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

% export SCOREP_ENABLE_UNWINDING=true

% # use the default sampling frequency

% #export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_B.4

 Set new configuration

variable to enable

sampling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Measurement Configuration: Memory Recording

 Record calls to memory API functions and there resulting memory usage changes
 C, C++, MPI, and SHMEM
 Fortran only for GNU Compilers

 Supports profile and trace generation
 Memory leaks are recorded in the profile additionally
 Resulting traces are not supported by Scalasca yet

 Available since Score-P 2.0

14DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

% export SCOREP_MEMORY_RECORDING=true

% export SCOREP_MPI_MEMORY_RECORDING=true

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

memory recording

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Measurement Configuration: Metrics

 Available PAPI metrics
 Preset events: common set of events deemed relevant and useful for application performance

tuning
 Abstraction from specific hardware performance counters,
 mapping onto available events done by PAPI internally

 Native events: set of all events that are available on the CPU
 (platform dependent)

 Use the metric names in one of the SCOREP_METRIC_PAPI or SCOREP_METRIC_PAPI_PER_PROCESS

measurement configuration variables separated by comma

15

% papi_avail

% papi_native_avail

Note: Due to hardware restrictions:
- Number of concurrently recorded events is

limited
- There may be invalid combinations of

concurrently recorded events

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Measurement Configuration: Metrics

 Available resource usage

metrics

 Note:
1) Not all fields are maintained on

each platform.

2) Check scope of metrics (per

process vs. per thread)

 Use the member names in

one of these

measurement

configuration variables

separated by comma:
 SCOREP_METRIC_RUSAGE

 SCOREP_METRIC_RUSAGE_PER_PROCESS

16

% man getrusage

struct rusage {

struct timeval ru_utime; /* user CPU time used */

struct timeval ru_stime; /* system CPU time used */

long ru_maxrss; /* maximum resident set size */

long ru_ixrss; /* integral shared memory size */

long ru_idrss; /* integral unshared data size */

long ru_isrss; /* integral unshared stack size */

long ru_minflt; /* page reclaims (soft page faults) */

long ru_majflt; /* page faults (hard page faults) */

long ru_nswap; /* swaps */

long ru_inblock; /* block input operations */

long ru_oublock; /* block output operations */

long ru_msgsnd; /* IPC messages sent */

long ru_msgrcv; /* IPC messages received */

long ru_nsignals; /* signals received */

long ru_nvcsw; /* voluntary context switches */

long ru_nivcsw; /* involuntary context switches */

};

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Measurement Configuration: CUDA

 Record CUDA events with the CUPTI interface

 All possible recording types

 runtime CUDA runtime API

 driver CUDA driver API

 gpu GPU activities

 kernel CUDA kernels

 idle GPU compute idle time

 memcpy CUDA memory copies

17

% export SCOREP_CUDA_ENABLE=gpu,kernel,idle

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P User Instrumentation API

 Can be used to mark initialization, solver & other phases

 Annotation macros ignored by default

 Enabled with [--user] flag of instrumenter

 Defines SCOREP_USER_ENABLE

 Appear as additional regions in analyses

 Distinguishes performance of important phase from rest

 Can be of various type

 E.g., function, loop, phase

 See user manual for details

 Available for Fortran / C / C++

18DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P User Instrumentation API (Fortran)

 Requires processing by

the C preprocessor
 For most compilers, this can

be automatically achieved by
having an uppercase file
extension, e.g., main.F or
main.F90

19

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

! Declarations

SCOREP_USER_REGION_DEFINE(solve)

! Some code…

SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

SCOREP_USER_REGION_TYPE_LOOP)

do i=1,100

[...]

end do

SCOREP_USER_REGION_END(solve)

! Some more code…

end subroutine

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P User Instrumentation API (C/C++)

20

#include "scorep/SCOREP_User.h"

void foo()

{

/* Declarations */

SCOREP_USER_REGION_DEFINE(solve)

/* Some code… */

SCOREP_USER_REGION_BEGIN(solve, “<solver>",

SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

SCOREP_USER_REGION_END(solve)

/* Some more code… */

}

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P User Instrumentation API (C++)

21

#include "scorep/SCOREP_User.h"

void foo()

{

// Declarations

// Some code…

{

SCOREP_USER_REGION(“<solver>",

SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

}

// Some more code…

}

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P Measurement Control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default
 Enabled with [--user] flag

22

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

! Some code…

SCOREP_RECORDING_OFF()

! Loop will not be measured

do i=1,100

[...]

end do

SCOREP_RECORDING_ON()

! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

/* Some code… */

SCOREP_RECORDING_OFF()

/* Loop will not be measured */

for (i = 0; i < 100; i++) {

[...]

}

SCOREP_RECORDING_ON()

/* Some more code… */

}

Fortran (requires C preprocessor) C / C++

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Conclusion and Outlook

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Project management

 Ensure a single official release version at all times which will always work with the

tools

 Allow experimental versions for new features or research

 Commitment to joint long-term cooperation
 Development based on meritocratic governance model
 Open for contributions and new partners

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016) 24

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Future features

 Scalability to maximum available CPU core count

 Support for emerging architectures and new programming models

 Features currently worked on:
 User provided wrappers to 3rd party libraries
 Hardware and MPI topologies
 Basic support of measurement without re-compiling/-linking
 I/O recording
 Java recording
 Persistent memory recording (e.g., PMEM, NVRAM, …)

DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016) 25

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further Information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods) and sampling

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under New BSD open-source license

 Documentation & Sources: http://www.score-p.org

 User guide also part of installation: <prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

26DKRS PROGRAM ANALYSIS AND TOOLS WORKSHOP (HAMBURG, OCTOBER 25-27, 2016)

