Python Sea Ice Spiral#

Software requirements:

  • Python 3

  • Xarray

  • Numpy

  • python-cdo

  • Matplotlib

Example script#

arctic_death_spiral.py

#!/usr/bin/env python
# coding: utf-8
'''
DKRZ example

Sea Ice Spiral (or Arctic Death Spiral)

Plot yearly seaIce fraction similar to the spiral plot based on the
`Arctic Death Spiral of Andy Lee Robinson (2017)` from the CMIP5
Sea Ice Area Fraction.

Data:         CMIP5, MPI-ESM LR

Scenario:     RCP 4.5

Variable:     sic
              (Sea Ice Area Fraction, fraction of grid cell
               covered by sea ice in %)

Region:       Arctis, 50-90°N

-------------------------------------------------------------------------------
2022 copyright DKRZ licensed under CC BY-NC-SA 4.0
               (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
-------------------------------------------------------------------------------
'''
import os
import numpy as np
import xarray as xr

import matplotlib.pyplot as plt

from cdo import *
cdo = Cdo()

def main():
    # Input data file
    icefile = '../../data/sic_OImon_MPI-ESM-LR_rcp45_r1i1p1_200601-230012.nc'

    # Data variable
    #
    # The variable name of **Sea Ice Area Fraction** is **sic**.
    varname = 'sic'

    # Extract Arctic data
    #
    # Extract the years 2006 to 2060 and extract the Arctic region 50-90°N
    # from the input data file.
    # In this case, we store the result of the CDO call to an xarray.Dataset.
    sel_years = 55

    ds = cdo.fldmean(input='-sellonlatbox,-180.0,180.0,50.0,90.0 '+\
                           '-seltimestep,1/'+str(sel_years*12)+\
                           ' '+icefile,
                     options='-r --reduce_dim',
                     returnXDataset=True)

    # Extract data by month
    #
    # Extract the data for each month for all years and assign it to
    # seperate variables.
    # The data has to be reversed because Matplotlib will draw the data on
    # polar plots counterclockwise per default, but we want to have it
    # clockwise.
    month_ind = ds.groupby('time.month').groups

    sic_jan = ds.isel(time=month_ind[1]).sic[::-1]
    sic_feb = ds.isel(time=month_ind[2]).sic[::-1]
    sic_mar = ds.isel(time=month_ind[3]).sic[::-1]
    sic_apr = ds.isel(time=month_ind[4]).sic[::-1]
    sic_may = ds.isel(time=month_ind[5]).sic[::-1]
    sic_jun = ds.isel(time=month_ind[6]).sic[::-1]
    sic_jul = ds.isel(time=month_ind[7]).sic[::-1]
    sic_aug = ds.isel(time=month_ind[8]).sic[::-1]
    sic_sep = ds.isel(time=month_ind[9]).sic[::-1]
    sic_oct = ds.isel(time=month_ind[10]).sic[::-1]
    sic_nov = ds.isel(time=month_ind[11]).sic[::-1]
    sic_dec = ds.isel(time=month_ind[12]).sic[::-1]

    # Minimum/maximum/increment of data
    #
    # The minimum value 0 is the center of the circle (radius=0) and
    # the maximum is the radius of the outer circle.
    valMin = 0
    valMax = 25
    valInt = 5

    circleinc = valInt                #-- circle (radius) increment
    ncircles  = valMax/circleinc      #-- number of circles

    # Define 12 colors
    #
    # We want to use a different color for each month.
    colors = ['red', 'orange', 'gold', 'limegreen', 'green', 'lightblue',
              'cyan', 'blue', 'black', 'purple', 'pink', 'magenta']

    # Get years
    #
    # Here, we do not need to reverse the years values because we tell
    # Matplotlib later to use the theta direction clockwise.
    years = sic_jan.time.dt.year.values

    # Radius and angel
    #
    #   - the radii of the line points are defined by the data itself
    #     (= y-axis)
    #   - the angles (theta) of the data points depend on the number of
    #     data values (x-axis)
    theta = np.linspace(0, 2*np.pi, len(years), endpoint=False)
    dtheta = theta[1]-theta[0]

    # Define dictionary containing the month names and the associated data
    # To make the plotting part more convenient later, we put the name and
    # data of each month in a dictionary.
    mon_dict = {'January':sic_jan,
                'February':sic_feb,
                'March':sic_mar,
                'April':sic_apr,
                'May':sic_may,
                'June':sic_jun,
                'July':sic_jul,
                'August':sic_aug,
                'September':sic_sep,
                'October':sic_oct,
                'November':sic_nov,
                'December':sic_dec}

    # Create the plot
    #
    # Now, every thing we need is set and we can create the line plot with
    # polar projection.
    plt.switch_backend('agg')

    fig = plt.figure(figsize=(12,12))
    ax = fig.add_subplot(projection='polar', facecolor='white')

    #-- add annotations
    plt.suptitle('Sea Ice Fraction (yearly mean)',
                 fontname='Arial', fontsize=20, weight='bold')
    plt.title('MPI-ESM  LR', y=1.07,
              fontname='Arial', fontsize=14, weight='bold')

    fig.text(0.12, 0.86, 'Arctic',
             fontname='Arial', fontsize=16, weight='bold')
    fig.text(0.12, 0.84, '(lat: 50-90°)',
             fontname='Arial', fontsize=14, weight='bold')
    fig.text(0.8, 0.86, 'RCP 4.5',
             fontname='Arial', fontsize=16, weight='bold')

    plt.figtext(0.97, 0.145,
                '© 2022 DKRZ / MPI-M',
                fontname='Arial', fontsize=10, weight='bold', ha='right')
    plt.figtext(0.97, 0.13,
                '© based on "Arctic Death Spiral", Andy Lee Robinson, 2017',
                fontname='Arial', fontsize=8, ha='right')

    #-- draw the data for each month and connect the end point with the
    #-- start point with dotted gray line
    for i,mon in enumerate(mon_dict):
        ax.plot(theta, mon_dict[mon],
                color=colors[i],
                linewidth=2,
                label=mon)
        ax.plot([theta[-1],theta[0]], [mon_dict[mon][-1], mon_dict[mon][0]],
                color='black',
                alpha=0.3,
                linestyle=':',
                linewidth=1.5)

    #-- use years instead angles (theta) as x-tick labels
    #-- set_xticks must be set to use set_xticklabels
    ax.set_xticks(theta)
    ax.set_xticklabels([str(yyyy) for yyyy in years],
                       c='blue', fontsize=10, fontweight='bold')

    #-- move 0° to top and draw the angles clockwise
    ax.set_theta_zero_location('N')
    ax.set_theta_direction(1)

    #-- move y-tick labels also to 'N'
    ax.set_rlabel_position(0)

    #-- don't draw the outer circle
    ax.spines['polar'].set_visible(False)

    #-- draw gray 'pie' segment to emphasize annotation
    ax.fill_between(np.linspace(theta[-1], theta[-1]+dtheta, 2,
                                endpoint=True),
                    valMin, valMax, color='black', alpha=0.05, zorder=0)

    #-- y-tick settings
    ax.set_ylim(valMin, valMax)
    #-- set_yticks must be set to use set_yticklabels
    ax.set_yticks(np.arange(valMin, valMax, step=valInt))
    ax.set_yticklabels(np.arange(valMin, valMax, step=valInt),
                       fontsize=12, fontweight='bold',
                       va='bottom', ha='left', x=-0.01)
    plt.text(theta[0]-dtheta/2, 23.5, '%',
             fontname='Arial', fontsize=14, fontweight='bold', ha='right')

    #-- add legend
    ax.legend(loc='center', bbox_to_anchor=(1.13, 0.5))

    #-- write plot to PNG file
    plt.savefig('plot_arctic_death_spiral_py.png',
                 bbox_inches='tight',
                 facecolor='white',
                 dpi=100)


if __name__ == '__main__':
    main()

Plot result#

image0