Python different anomalies#

Software requirements:

  • Python 3

  • Xarray

  • SciPy

  • Pandas

  • Matplotlib

Example script#

anomalies_North_Germany.py

#!/usr/bin/env python
# coding: utf-8
'''
DKRZ example

Draw the anomalies of air temperatur, precipitation, summer days, hot days,
and tropical nights.

Data source:    
	https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/
DWD weather dictionary:  
	https://www.dwd.de/DE/service/lexikon/lexikon_node.html

Variables               frequency       time range
----------------------------------------------------
air temperature mean    annual          1881 - 2021
precipitation           annual          1881 - 2021
tropical nights         annual          1951 - 2021
summer days             annual          1951 - 2021
hot_days                annual          1951 - 2021

-------------------------------------------------------------------------------
2021 copyright DKRZ licensed under CC BY-NC-SA 4.0 <br>
               (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
-------------------------------------------------------------------------------
'''
import numpy as np
import pandas as pd
import scipy.signal
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.ticker import StrMethodFormatter

#---------------------------------------------------------------------------
# Function to calculate the anomalies
#---------------------------------------------------------------------------
def calc_anomalies(data, reftime, name='Deutschland'):
    ref_i = data.index[data.Jahr == reftime[0]]
    ref_j = data.index[data.Jahr == reftime[1]]
    ref_data = data.loc[range(ref_i.values[0],ref_j.values[0]+1)][name]

    climatology = ref_data.mean()
    anomaly     = data.Deutschland - climatology

    return anomaly

#---------------------------------------------------------------------------
# Function to calculate the running mean
# The Savitzky-Golay filter uses convolution process applied on an array for
# smoothing. The Python package scipy provide the function as shown in the
# next example.
#---------------------------------------------------------------------------
def calc_running_mean(data, window_length=30, polyorder=3, mode='nearest'):
    return scipy.signal.savgol_filter(data,
                                      window_length,
                                      polyorder,
                                      mode='nearest')

#---------------------------------------------------------------------------
# Function to create one plot of the gridspec panel
#---------------------------------------------------------------------------
def create_plot(ax, x, data, uppertitle='', lowertitle='', xlabel='', ylabel='',
                refline=False, plotstyle='line'):
    ax.set_facecolor('whitesmoke')

    colors = ['red' if (value > 0) else 'blue' for value in data]

    if plotstyle == 'bar':
        ax.bar(x, data, color=colors)
    else:
        ax.plot(x, data, linestyle='-', color='blue', linewidth=1)

    if refline:
        plt.axhline(y=0., color='gray', linestyle=(0, (5, 5)), linewidth=0.8)

    ax.plot(x, calc_running_mean(data), color='black', linewidth=1.5)

    ax.grid(linestyle=(0, (5, 5)), linewidth=0.5, color='dimgray')
    ax.set_xlim(x.values[0], x.values[-1])
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)

    xmin, xmax = ax.get_xlim()
    ymin, ymax = ax.get_ylim()

    ax.text(xmin+1.5, ymax-(ymax-ymin)*0.04, uppertitle, fontsize=16, 
            ha='left', va='top')
    ax.text(xmax-0.5, ymin+(ymax-ymin)*0.01, lowertitle, fontsize=8, 
            ha='right', va='bottom')

#----------
#   Main
#----------
def main():
    #-- Which state do we want to plot?
    states = 'Niedersachsen/Hamburg/Bremen'

    #-- To get a better comparison of the anomalies we extract the same time range
    #-- for temperature and precipitation
    sel_time = [1951,2021]

    #-- Reference time range for the 30 years climatology
    ref_time = [1981,2010]

    #---------------------------------------------------------------------------
    # Air temperature (annual mean) in °C (2 m altitude).
    # Read the CSV data from DWD with Pandas.
    #---------------------------------------------------------------------------
    temp_file = '../../data/regional_averages_tm_year.txt'

    temp = pd.read_csv(temp_file, header=1, sep=';')

    #-- Get the indices for the selected time range that applies to all variables
    t_i = temp.index[temp.Jahr == sel_time[0]]
    t_j = temp.index[temp.Jahr == sel_time[1]]

    # Extract the temperature data for the selected time range
    temp_sel = temp.loc[range(t_i[0],t_j[0]+1)]

    #-- Compute the temperature anomalies
    anomaly_temp_sel = calc_anomalies(temp_sel, reftime=ref_time, name=states)

    #---------------------------------------------------------------------------
    # Precipitation (annual mean) in mm.
    #---------------------------------------------------------------------------
    prec_file = '../../data/regional_averages_rr_year.txt'

    prec = pd.read_csv(prec_file, header=1, sep=';')

    #-- Extract the precipitation data for the selected time range
    prec_sel = prec.loc[range(t_i.values[0],t_j.values[0]+1)]

    #-- Compute the precipitation anomalies
    anomaly_prec_sel = calc_anomalies(prec_sel, reftime=ref_time, name=states)

    #---------------------------------------------------------------------------
    # Summer days (annual mean)
    #
    # DWD: 'A summer day is a day when the maximum air temperature is ≥ 25 °C.
    # The number of summer days also includes the subset of hot days. The number
    # of summer days supplements the statements on the quality of a summer, which
    # is primarily determined on the basis of the number of hot days.'
    #---------------------------------------------------------------------------
    summer_file = '../../data/regional_averages_txas_year.txt'

    summer = pd.read_csv(summer_file, header=1, sep=';')

    #-- Compute the tropical nights anomalies
    anomaly_summer = calc_anomalies(summer, reftime=ref_time, name=states)

    #---------------------------------------------------------------------------
    # Hot Days (annual mean)
    #
    # DWD: 'A Hot Day is a day on which the maximum air temperature is ≥ 30 °C.
    # A hot day was also called a tropical day in the past.'
    #---------------------------------------------------------------------------
    hotd_file = '../../data/regional_averages_txbs_year.txt'

    hotd = pd.read_csv(hotd_file, header=1, sep=';')

    #-- Compute the hot days anomalies
    anomaly_hotd = calc_anomalies(hotd, reftime=ref_time, name=states)

    #---------------------------------------------------------------------------
    # Tropical nights (annual mean)
    #
    # DWD: 'A tropical night is a night in which the minimum air temperature
    #       is ≥ 20 °C (daily measurement period: 18 UTC to 06 UTC ). At most
    #       DWD stations, there is an average of less than one tropical night
    #       per year. At individual very favorably located stations, 2 to 3
    #       annual tropical nights are registered.'
    #---------------------------------------------------------------------------
    tropic_file = '../../data/regional_averages_tnes_year.txt'

    tropic = pd.read_csv(tropic_file, header=1, sep=';')

    #-- Compute the tropical nights anomalies
    anomaly_tropic = calc_anomalies(tropic, reftime=ref_time, name=states)

    #---------------------------------------------------------------------------
    #-- Plot all anomalies on one page
    #-- Draw all anomalies plots under each other and save the figure in a PNG file.
    #---------------------------------------------------------------------------

    plt.switch_backend('agg')

    fig = plt.figure(figsize=(14,28))

    gs = gridspec.GridSpec(5, 1, figure=fig, height_ratios = [1,1,1,1,1], hspace=0.02)

    plt.rcParams['xtick.top']    = plt.rcParams['xtick.labeltop'] = True
    plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False

    #-- temperature anomalies
    ax0 = fig.add_subplot(gs[0,:])

    create_plot(ax0, temp_sel.Jahr, anomaly_temp_sel,
                uppertitle='surface air temperature annual anomalies',
                lowertitle='(ref. time: '+str(ref_time[0])+'-'+str(ref_time[1])+')',
                xlabel='year',
                refline=True,
                plotstyle='bar')
    ax0.set_xlabel('')
    ax0.yaxis.set_major_formatter(StrMethodFormatter(u"{x:.1f} °C"))

    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = False
    plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False

    #-- precipitation anomalies
    ax1 = fig.add_subplot(gs[1,:])

    create_plot(ax1, prec_sel.Jahr, anomaly_prec_sel,
                   uppertitle='precipitation annual anomalies',
                   lowertitle='(ref. time: '+str(ref_time[0])+'-'+str(ref_time[1])+')',
                   xlabel='year',
                   refline=True,
                   plotstyle='bar')
    ax1.set_xlabel('')
    ax1.yaxis.set_major_formatter(StrMethodFormatter(u"{x:.0f} mm"))

    #-- summer days anomalies
    ax2 = fig.add_subplot(gs[2,:])

    create_plot(ax2, summer.Jahr, anomaly_summer,
                   uppertitle='summer days annual anomalies',
                   lowertitle='(ref. time: '+str(ref_time[0])+'-'+str(ref_time[1])+')',
                   xlabel='year',
                   ylabel='number of days with max. air temperature is ≥ 25 °C',
                   refline=True,
                   plotstyle='bar')
    ax2.set_xlabel('')

    #-- hot days anomalies
    ax3 = fig.add_subplot(gs[3,:])

    create_plot(ax3, hotd.Jahr, anomaly_hotd,
                uppertitle='hot days annual anomalies',
                lowertitle='(ref. time: '+str(ref_time[0])+'-'+str(ref_time[1])+')',
                xlabel='year',
                ylabel='number of days with max. air temperature ≥ 30 °C',
                refline=True,
                plotstyle='bar')
    ax3.set_xlabel('')

    plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = True

    #-- tropical nights anomalies
    ax4 = fig.add_subplot(gs[4,:])

    create_plot(ax4, tropic.Jahr, anomaly_tropic,
                uppertitle='tropical nights annual anomalies',
                lowertitle='(ref. time: '+str(ref_time[0])+'-'+str(ref_time[1])+')',
                xlabel='year',
                ylabel='number of nights with min. air temperature ≥ 20 °C',
                refline=True,
                plotstyle='bar')

    #-- ad some text
    plt.figtext(0.13, 0.9, states, ha='left', fontsize=20)
    plt.figtext(0.9, 0.895, '(observed data)', ha='right', fontsize=12)

    plt.figtext(0.913, 0.13, '© 2022 DKRZ',
                rotation=270, fontsize=8)
    plt.figtext(0.915, 0.17, 
                'Data source: DWD (https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/)',
                rotation=270, fontsize=8)

    #-- write plot to PNG file
    plt.savefig('plot_different_anomalies_North_Germany.png', bbox_inches='tight', 
                facecolor='white')


if __name__ == '__main__':
    main()

Plot result:

image0