Python unstructured ICON triangles plot (python 3)#
Software requirements:
Python 3
Numpy
matplotlib
cartopy
xarray
ncells: 20480
Example script#
DKRZ_ICON_triangles.py
#!/usr/bin/env python
# coding: utf-8
'''
DKRZ example
Draw ICON data on original grid (triangles).
Content
- read ICON model data
- use variable 'ta'
- use cell vertices
- draw the triangles with PolyCollection
- add a colorbar
- save to PNG
-------------------------------------------------------------------------------
2021 copyright DKRZ licensed under CC BY-NC-SA 4.0 <br>
(https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
-------------------------------------------------------------------------------
'''
import time, os
import xarray as xr
import numpy as np
import numpy.ma as ma
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.tri as tri
from matplotlib.collections import PolyCollection
import cartopy.crs as ccrs
import cartopy.feature as cfeature
def main():
plt.switch_backend('agg')
t1 = time.time() #-- retrieve start time
#-- set title string
title = 'ICON triangles plot'
#-- define data and grid path, and variable name
varName = 'ta'
fname = '../../data/ta_ps_850.nc'
gname = '../../data/r2b4_amip.nc'
ds = xr.open_dataset(fname)
dsgrid = xr.open_dataset(gname)
#-- get variable
var = ds[varName][0,0,:].values
var = var - 273.15
#-- get coordinates and convert radians to degrees
clon = np.rad2deg(dsgrid.clon.values)
clat = np.rad2deg(dsgrid.clat.values)
clon_vertices = np.rad2deg(dsgrid.clon_vertices.values)
clat_vertices = np.rad2deg(dsgrid.clat_vertices.values)
ncells, nv = clon_vertices.shape[0], clon_vertices.shape[1]
#-- set contour levels, labels
varMin, varMax, varInt = -32, 28, 2
levels = np.arange(varMin, varMax+varInt, varInt)
nlevs = levels.size
labels = ['{:.2f}'.format(x) for x in levels]
#-- print information to stdout
print('')
print('Cells: %6d ' % clon.size)
print('Variable min/max: %6.2f ' % np.nanmin(var)+'/'+' %.2f' % np.nanmax(var))
print('Contour min/max: %6.2f ' % varMin+'/'+' %.2f' % varMax)
print('')
#-- set projection
projection = ccrs.PlateCarree()
#-- create figure and axes instances; we need subplots for plot and colorbar
fig, ax = plt.subplots(figsize=(10,10), subplot_kw=dict(projection=projection))
ax.set_global()
#-- plot land areas at last to get rid of the contour lines at land
ax.coastlines(linewidth=0.5, zorder=2)
ax.gridlines(draw_labels=True, linewidth=0.5, color='dimgray', alpha=0.4,
zorder=2)
#-- plot the title string
plt.title(title)
#-- define color map
cmap = plt.get_cmap('Spectral_r', nlevs) #-- read the color map
cmaplist = [i for i in range(cmap.N)] #-- color bar indices
ncol = len(cmaplist) #-- number of colors
colors = np.ones([ncells,4], np.float32) #-- assign color array for triangles
print('levels: ',levels)
print('nlevs: %3d' %nlevs)
print('ncol: %3d' %ncol)
print('')
#-- set color index of all cells in between levels
for m in range(0,ncol-1):
vind = []
for i in range(0,ncells-2, 1):
if (var[i] >= levels[m] and var[i] < levels[m+1]):
colors[i,:] = cmap(cmaplist[m])
vind.append(i)
print('set colors: finished level %3d' % m ,
' -- %5d ' % len(vind) ,
' polygons considered')
del vind
colors[np.where(var < varMin),:] = cmap(cmaplist[0])
colors[np.where(var >= varMax),:] = cmap(cmaplist[ncol-1])
#-- create the triangles
clon_vertices = np.where(clon_vertices < -180., clon_vertices + 360., clon_vertices)
clon_vertices = np.where(clon_vertices > 180., clon_vertices - 360., clon_vertices)
triangles = np.zeros((ncells, nv, 2), np.float32)
for i in range(0, ncells, 1):
triangles[i,:,0] = np.array(clon_vertices[i,:])
triangles[i,:,1] = np.array(clat_vertices[i,:])
print('')
print('--> triangles done')
#-- create polygon/triangle collection
coll = PolyCollection(triangles, array=None, fc=colors, edgecolors='black',
linewidth=0.05, transform=ccrs.Geodetic(), zorder=0)
ax.add_collection(coll)
print('--> polygon collection done')
#-- add a color bar
cb = plt.cm.ScalarMappable(cmap=cmap,
norm=plt.Normalize(vmin=varMin, vmax=varMax))
cb.set_array([])
cbar = plt.colorbar(cb,
orientation='horizontal',
ticks=levels,
boundaries=levels,
format='%0.0f',
shrink=0.8,
pad=0.04,
aspect=30,
)
plt.setp(cbar.ax.get_xticklabels()[::2], visible=False)
cbar.set_label('[deg C]')
#-- maximize and save the PNG file
plt.savefig('plot_ICON_triangles.png', bbox_inches='tight',dpi=150)
#-- get wallclock time
t2 = time.time()
print('Wallclock time: %0.3f seconds' % (t2-t1))
print('')
if __name__ == '__main__':
main()